首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,α1,α2,α3分别是属于特征值λ1,λ2,λ3的特征向量,若α1,A(α1+α2),A2(α1+α2+α3)线性无关,则λ1,λ2,λ3满足_______.
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,α1,α2,α3分别是属于特征值λ1,λ2,λ3的特征向量,若α1,A(α1+α2),A2(α1+α2+α3)线性无关,则λ1,λ2,λ3满足_______.
admin
2018-05-21
22
问题
设λ
1
,λ
2
,λ
3
是三阶矩阵A的三个不同特征值,α
1
,α
2
,α
3
分别是属于特征值λ
1
,λ
2
,λ
3
的特征向量,若α
1
,A(α
1
+α
2
),A
2
(α
1
+α
2
+α
3
)线性无关,则λ
1
,λ
2
,λ
3
满足_______.
选项
答案
λ
2
λ
3
≠0
解析
令x
1
α
1
+x
2
A(α
1
+α
2
)+x
3
A
2
(α
1
+α
2
+α
3
)=0,即
(x
1
+λ
1
x
2
x
2
+λ
1
2
x
3
)α
1
+(λ
2
x
2
+λ
2
2
x
3
)=
2
+λ
3
2
x
3
α
3
=0,则有
x
1
+λ
1
x
2
+λ
1
2
x
3
=0,λ
2
x
2
+λ
2
2
x
3
=0,λ
3
2
x
3
=0.因为x
1
,x
2
,x
3
只能全为零,所以
λ
2
λ
3
≠0.
转载请注明原文地址:https://kaotiyun.com/show/w7r4777K
0
考研数学一
相关试题推荐
设在上半平面D={(x,y)|y>0}内,函数f(x,y)具有连续偏导数,且对任意的t>0都有f(tx,ty)=t—2一f(x,y).证明对D内的任意分段光滑的有向简单闭曲线L,都有∮Lyf(x,y)dx一xf(x,y)dy=0.
设α1,α2,α3是三维向量空间R3中的一组基,则由基α2,α1一α2,α1+α3到基α1+α2,α3,α2一α1的过渡矩阵为()
设D={(x,y)|x2+y2≤R2,R>0),常数λ≠0,则二重积分的值()
已知f(x)在[0,2]上连续,在(0,2)内二阶可导,且∫12f(x)dx=f(2).证:ε∈(0,2),使f’(ε)+f"(ε)=0.
设总体X的密度函数为其中θ>一1是未知参数,X1,X2,…,Xn是来自总体X的简单随机样本.(Ⅰ)求θ的矩估计量;(Ⅱ)求θ的最大似然估计量.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.问A能否相似对角化?若能,请求出相似变换矩阵P与对角阵A;若不能,请说明理由.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.求矩阵A的特征值;
设总体X的密度函数为X1,X2,…,Xn为来自总体X的简单随机样本,令讨论作为参数θ的估计量是否具有无偏性
进行5次试验,测得锰的熔化点(℃)如下:12691271125612651254已知锰的熔化点服从正态分布,是否可以认为锰的熔化点显著高于1250℃?(取显著性水平α=0.01)
随机试题
尿葡萄糖试带法产生假阴性反应的主要干扰物质是
不出现于下运动神经元瘫的临床表现是
下列哪些可作为应急电源?()
在建设工程施工阶段确定施工进度分解目标时,应考虑的因素不包括()。
非上市股份有限公司股份报价转让与代办股份转让系统的股份转让和证券交易所市场的股票交易有所不同,主要体现在()等方面。
如果债券不是分期付息,而是到期时一次还本付息,那么平价发行债券,其到期收益率与票面利率相同。()
患者,男,67岁,大学教授,因高血压住院治疗。适用于该患者的最佳护患关系模式为()。
牙髓坏死的临床表现是()。
Someofyou,whoweallknowarepoorandfindithardtolive,aresometimes,asitwere,gaspingforbreath.Ihavenodoubtt
A、Saltyandsour.B、Sweetandsalty.C、Saltyandspicy.D、Spicyandbitter.B文章中提到,总的来说,孩子们最容易分辨的是甜味和咸味;对于他们来说,很难区分咸味和酸味、咸味和辣味,故
最新回复
(
0
)