首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y(x)是方程y(4)一y"=0的解,且当x→0时,y(x)是x的3阶无穷小,求y(x).
设y(x)是方程y(4)一y"=0的解,且当x→0时,y(x)是x的3阶无穷小,求y(x).
admin
2020-03-16
41
问题
设y(x)是方程y
(4)
一y"=0的解,且当x→0时,y(x)是x的3阶无穷小,求y(x).
选项
答案
由泰勒公式[*] 当x→0时,y(x)与x
3
同阶→y(0)=0,y’(0)=0,y"(0)=0,y"’(0)=C,其中C为非零常数.由这些初值条件,现将方程y
(4)
一y"=0两边积分得 ∫
0
x
y
(4)
(t)dt一∫
0
x
y"(t)dt=0, 即y"’(x)一C—y’(x)=0,两边再积分得y"(x)一y(x)=Cx. 易知,它有特解y*=一Cx,因此它的通解是y=C
1
e
x
+C
2
e
-x
一Cx. 由初值y(0)=0,y’(0)=0得 C
1
+C
2
=0,C
1
一C
2
=C[*] 因此最后得[*]其中C为任意非零常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/wE84777K
0
考研数学二
相关试题推荐
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关,如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3.
设4元线性方程组(Ⅰ)为,又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(-1,2,2,1).(1)求线性方程组(Ⅰ)的基础解系;(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解,若没有,
设χ=χ(t)由sint-∫tχ(t)φ(u)du=0确定,φ(0)=φ′(0)=1且φ(u)>0为可导函数,求χ〞(0).
求下列二重积分:(Ⅰ)I=,其中D为正方形域:0≤x≤1,0≤y≤1;(Ⅱ)I=|3x+4y|dxdy,其中D:x2+y2≤1;(Ⅲ)I=ydxdy,其中D由直线z=-2,y=0,y=2及曲线x=所围成.
[2016年]设D是由直线y=l,y=x,y=一x围成的有界区域,计算二重积分dxdy.
[2011年]已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,f(x,y)dxdy=a,其中D={(x,y)∣0≤x≤1,0≤y≤1},计算二重积分I=xyf″xy(x,y)dxdy.
利用定积分定义计算下列积分:
讨论f(x,y)=在点(0,0)处的连续性、可偏导性及可微性.
设A,B均为三阶方阵,λ1=1,λ2=2,λ3=一2为A的三个特征值,∣B∣=一3,则行列式∣2A*B+B∣=_______.
曲线y=的斜渐近线为_______.
随机试题
诊断乳癌的特殊检查方法有
下列哪项会造成生理性多尿
关于子宫的正确描述是
在恒定不变的压强下,气体分子的平均碰撞频率Z与温度T的关系为:
对于今年公布的《食品安全法》有什么看法?
星期五下午,社里召开作者坐谈会。到会的有十五、六人。会议的主题是如何迎接市场挑战?五德生教授首挡其冲。他说:“作者即要有文化意识,也要有市场意识。把读者的心理不把握准,就很难谈得上驾驭市场。”成潜教授刚刚从北京甫抵上海。他在发言中强调出版社要提高主体意识,
马克思在《黑格尔法哲学批判》的导言中曾经指出:“批判的武器当然不能代替武器的批判,物质的力量只能用物质的力量来摧毁,理论一经群众掌握,也会变成物质力量。”这句话体现的哲学思想是()
Consumerproductssuchasshampoosandsunscreens,evenonesboostedassafer,maycontainpotentiallyharmfulchemicalsnotlis
Neowarethinclientsareconnecteddevicesdesignedforserver-basedcomputing,providingasolidfoundationforfastandeasya
Amongthenewspapers,whichofthefollowingisNOTadailynewspaper?
最新回复
(
0
)