首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(x,y)在区域D上服从均匀分布,其中D={(x,y)||X|+| Y |≤1}。又设U=X+Y,V=X-Y,试求: (Ⅰ)U和V的概率密度; (Ⅱ)U和V的协方差Cov(U,V)和相关系数。
设二维随机变量(x,y)在区域D上服从均匀分布,其中D={(x,y)||X|+| Y |≤1}。又设U=X+Y,V=X-Y,试求: (Ⅰ)U和V的概率密度; (Ⅱ)U和V的协方差Cov(U,V)和相关系数。
admin
2019-11-02
57
问题
设二维随机变量(x,y)在区域D上服从均匀分布,其中D={(x,y)||X|+| Y |≤1}。又设U=X+Y,V=X-Y,试求:
(Ⅰ)U和V的概率密度
;
(Ⅱ)U和V的协方差Cov(U,V)和相关系数
。
选项
答案
区域D实际上是以(-1,0),(1,0),(0,1),(0,-1)为顶点的正方形区域,D的面积为2,(X,Y)的联合概率密度[*],可利用[*]的对称性。 (Ⅰ)U=X+Y,F
U
(u)=P{U≤u}=P{X+Y≤u}=[*] 当u<-1时,F
U
(u)=0; 当-1≤u≤1时, [*] 当u>1时,F
U
(u)=1。 [*] 即U~U[-1,1]。 V=X-Y,F
V
(v)=P{V≤V}=P{X—Y≤v}=[*] 当v<-1时,F
V
(v)=0; 当-1≤v≤1时, [*]; 当v>1时,F
V
(v)=1。 [*] 即V~U[-1,1]。 (Ⅱ)Cov(U,V)=E(UV)-E(U)E(V),显然E(U)=E(V)=0,而E(UV)=E[(X+Y)(X-Y)]=E(X
2
-y
2
)=E(X
2
)-E(y
2
),由X,Y的对称性得E(X
2
)=E(y
2
),所以 [*]
解析
本题主要考查概率密度、协方差及相关系数的求法。
转载请注明原文地址:https://kaotiyun.com/show/wFS4777K
0
考研数学一
相关试题推荐
设函数,证明:存在常数A,B,使得当x→0+时,恒有f(x)=e+Ax+Bx2+o(x2),并求常数A,B.
设函数f0(x)在(一∞,+∞)内连续,fn(x)=∫0xfn-1(t)dt(n=1,2,…).证明:fn(x)绝对收敛.
设A为n阶矩阵,且Ak=O,求(E—A)—1.
设函数f(x)在x=1的某邻域内连续,且有
设当x>0时,方程kx+=1有且仅有一个解,试求k的取值范围。
设函数f(x)满足xf’(x)一2f(x)=-x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D.若D绕x轴旋转一周所得旋转体体积最小,求:曲线y=f(x);
设来自总体X的简单随机样本X1,X2,…,Xn,总体X的概率分布为其中0<θ<1.分别以v1,v2表示X1,X2,…,Xn中1,2出现的次数,试求未知参数θ的矩估计量;
设X1,X2,…,Xn是来自总体X的简单随机样本,已知E(Xk)=ak(k=1,2,3,4).证明:当n充分大时,随机变量Zn=Xi2近似服从正态分布,并指出其分布参数.
设点A(1,0,0),B(0,1,1),线段AB绕x轴一周所得旋转曲面为S.求曲面S介于平面z=0与z=1之间的体积.
已知I=∫(0,0)(1,1)(f(x)+ex)ydx+f(x)dy与路径无关,且f(0)=0,试求f(x)及I的值.
随机试题
患者,女性,20岁,未婚。发现右季肋部一枚手掌心大小的皮肤淡红色斑片2年余,无痛痒,近半年来自觉皮疹增大、变硬而就诊。患者素日体健,否认局部外伤史及冶游史,亦无局部治疗史。专检:右肋下见一约2cm×4cm大小暗红色斑片,周围绕以淡红色晕,中央轻度凹陷,表明
患者,女性,31岁,胸部损伤,多根肋骨多处骨折,出现反常呼吸,是因为
氟尿嘧啶抗癌的机制是
从经济分析的角度可以将税率区分为()。
保险人向被保险人赔偿保险金后,被保险人未经保险人同意放弃对第三者请求赔偿权利的,该行为无效。()
本书的作者都是硕士或博士,他们每年要为书的修订、出版、宣传工作而花费大量的时间精力,但得到的稿费却很少。平均起来,每位作者每为该书工作一小时所获得的报酬还不到5元,但他们依然乐此不疲。请用认知失调的理论来解释。
创建两个具有“多对多”关系的表之间的关联,应当
•Youwillhearamangivingsomeinformationaboutaconference.•Foreachquestion(9-15),fillintilemissinginformationi
Writingaboutmusicislikedancingaboutarchitecture,orsothesayinggoes.SometimesattributedtoFrankZappa,othertimes
NewYork’sclimateisnotverysalubrious;itswintersgiveyoucolds,anditssummerscancauseheatprostration.
最新回复
(
0
)