首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(x,y)在区域D上服从均匀分布,其中D={(x,y)||X|+| Y |≤1}。又设U=X+Y,V=X-Y,试求: (Ⅰ)U和V的概率密度; (Ⅱ)U和V的协方差Cov(U,V)和相关系数。
设二维随机变量(x,y)在区域D上服从均匀分布,其中D={(x,y)||X|+| Y |≤1}。又设U=X+Y,V=X-Y,试求: (Ⅰ)U和V的概率密度; (Ⅱ)U和V的协方差Cov(U,V)和相关系数。
admin
2019-11-02
58
问题
设二维随机变量(x,y)在区域D上服从均匀分布,其中D={(x,y)||X|+| Y |≤1}。又设U=X+Y,V=X-Y,试求:
(Ⅰ)U和V的概率密度
;
(Ⅱ)U和V的协方差Cov(U,V)和相关系数
。
选项
答案
区域D实际上是以(-1,0),(1,0),(0,1),(0,-1)为顶点的正方形区域,D的面积为2,(X,Y)的联合概率密度[*],可利用[*]的对称性。 (Ⅰ)U=X+Y,F
U
(u)=P{U≤u}=P{X+Y≤u}=[*] 当u<-1时,F
U
(u)=0; 当-1≤u≤1时, [*] 当u>1时,F
U
(u)=1。 [*] 即U~U[-1,1]。 V=X-Y,F
V
(v)=P{V≤V}=P{X—Y≤v}=[*] 当v<-1时,F
V
(v)=0; 当-1≤v≤1时, [*]; 当v>1时,F
V
(v)=1。 [*] 即V~U[-1,1]。 (Ⅱ)Cov(U,V)=E(UV)-E(U)E(V),显然E(U)=E(V)=0,而E(UV)=E[(X+Y)(X-Y)]=E(X
2
-y
2
)=E(X
2
)-E(y
2
),由X,Y的对称性得E(X
2
)=E(y
2
),所以 [*]
解析
本题主要考查概率密度、协方差及相关系数的求法。
转载请注明原文地址:https://kaotiyun.com/show/wFS4777K
0
考研数学一
相关试题推荐
设矩阵且|A|=-1,A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=[-1,-1,1]T,求a,b,c及λ0的值.
一批产品有10个正品2个次品,任意抽取两次,每次取一个,抽取后不放回,求第二次抽取次品的概率.
设A是n阶可逆阵,将A的第i行和第j行对换得到的矩阵记为B.证明:B可逆,并推导A-1和B-1的关系.
设n阶矩阵A=。证明:行列式|A|=(n+1)an。
设平面图形A由x2+y2≤2x与y≥x所确定,求图形A绕x=2旋转一周所得旋转体的体积。
设来自总体X的简单随机样本X1,X2,…,Xn,总体X的概率分布为其中0<θ<1.分别以v1,v2表示X1,X2,…,Xn中1,2出现的次数,试求未知参数θ的矩估计量;
设n阶矩阵A正定,X=(x1,x2,…,xn)T,证明:二次型f(x1,x2,…,xn)=—为正定二次型.
设点M(ξ,η,ζ)是椭球面上第一卦限中的点,S是该椭球面在点M处的切平面被三个坐标面所截得的三角形的上侧.求点(ξ,η,ζ)使曲面积分为最小,并求此最小值.
空间曲线,在xOy平面上的投影在x≥0处围成的区域记为D,则=___________.
设∑是球面x2+y2+z2=1的外侧在x≥0,y≥0,z≥0的部分,则曲面积分xyzdxdy=()
随机试题
关于浇筑水下混凝土用压浆法施工的说法,正确的有()。
不会发生睑内翻的是
女,45岁。2周前发热、咳嗽、咳黄痰、胸闷、胸痛,经抗感染治疗好转。现再次高热,咳嗽无痰,感胸闷。查体:T38.5℃,P115次/分,R25次/分,气管明显左移,右肺语颤减弱,叩诊呈实音,呼吸音消失,血WBC22×109/L,N0.89。该患者首
若将中药中所含生物碱盐和游离生物碱都提取出来,应选用的溶剂是
下列关于城市非正规就业的表述,正确的是()。
若年名义利率为12%,一年计息4次,则计息周期利率为()。
扩张型货币政策的主要功能是()。[2007年真题]
体现前运算阶段儿童认知特点的活动是()。
【2015年济南市】教育上的外铄论认为,人的身心发展取决于外在环境的影响。持这种观点的教育思想家是()。
“感觉到了东西,我们不能立刻理解它,只有理解了的东两,我们才能更深刻地感觉它”,这一观点说明
最新回复
(
0
)