首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(x,y)在区域D上服从均匀分布,其中D={(x,y)||X|+| Y |≤1}。又设U=X+Y,V=X-Y,试求: (Ⅰ)U和V的概率密度; (Ⅱ)U和V的协方差Cov(U,V)和相关系数。
设二维随机变量(x,y)在区域D上服从均匀分布,其中D={(x,y)||X|+| Y |≤1}。又设U=X+Y,V=X-Y,试求: (Ⅰ)U和V的概率密度; (Ⅱ)U和V的协方差Cov(U,V)和相关系数。
admin
2019-11-02
61
问题
设二维随机变量(x,y)在区域D上服从均匀分布,其中D={(x,y)||X|+| Y |≤1}。又设U=X+Y,V=X-Y,试求:
(Ⅰ)U和V的概率密度
;
(Ⅱ)U和V的协方差Cov(U,V)和相关系数
。
选项
答案
区域D实际上是以(-1,0),(1,0),(0,1),(0,-1)为顶点的正方形区域,D的面积为2,(X,Y)的联合概率密度[*],可利用[*]的对称性。 (Ⅰ)U=X+Y,F
U
(u)=P{U≤u}=P{X+Y≤u}=[*] 当u<-1时,F
U
(u)=0; 当-1≤u≤1时, [*] 当u>1时,F
U
(u)=1。 [*] 即U~U[-1,1]。 V=X-Y,F
V
(v)=P{V≤V}=P{X—Y≤v}=[*] 当v<-1时,F
V
(v)=0; 当-1≤v≤1时, [*]; 当v>1时,F
V
(v)=1。 [*] 即V~U[-1,1]。 (Ⅱ)Cov(U,V)=E(UV)-E(U)E(V),显然E(U)=E(V)=0,而E(UV)=E[(X+Y)(X-Y)]=E(X
2
-y
2
)=E(X
2
)-E(y
2
),由X,Y的对称性得E(X
2
)=E(y
2
),所以 [*]
解析
本题主要考查概率密度、协方差及相关系数的求法。
转载请注明原文地址:https://kaotiyun.com/show/wFS4777K
0
考研数学一
相关试题推荐
一批产品有10个正品2个次品,任意抽取两次,每次取一个,抽取后不放回,求第二次抽取次品的概率.
设(I),α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=.(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
设a>0,函数f(x)在[0,+∞)上连续有界,证明:微分方程y’+ay=f(x)的解在[0,+∞)上有界.
设A为n阶矩阵,若Ak-1α≠0,而Akα=0.证明:向量组α,Aα,…,Ak-1α线性无关.
设来自总体X的简单随机样本X1,X2,…,Xn,总体X的概率分布为其中0<θ<1.分别以v1,v2表示X1,X2,…,Xn中1,2出现的次数,试求未知参数θ的矩估计量;
设A=(x-z,x3+yz,-3xy3),求其中曲面∑为锥面在xOy面的上方部分,其单位法向量n指向锥面∑外侧。
设α1,α2,…,αm均为n维实列向量,令矩阵证明:A为正定矩阵的充分必要条件是向量组α1,α2,…,αm线性无关.
设随机变量X1,X2,…,Xn相互独立,Sn=X1+X2+…+Xn,则根据列维一林德伯格中心极限定理,当n充分大时Sn近似服从正态分布,只要X1,X2,…,Xn
在最简单的全概率公式P(B)=P(A)P(B|A)+P(A)P(B|A)中,要求事件A与B必须满足的条件是
曲面积分x3dxdy=______,其中S为球面x2+y2+z2=1的外侧.
随机试题
下列选项中,属于社会公德内容的有
Thereisonethingthateveryonewantsmorethananythingelse.Somepeopletrytogetitbymakingmoney.Theythinkthatwhen
秦先生,高血压病,近期血压波动较大,为该病人测量血压时应做到
关于慢性胃炎的叙述,正确的是()。
根据《公司登记管理条例》的规定,自治区、直辖市工商行政管理局负责本辖区内()的登记。
大宇电子有限公司为一般纳税人,增值税率17%。2007年因生产经营所需要,于年初开始自营建造厂房一幢,发生如下业务,要求:根据以下业务编制会计分录。4月30日经查明原因,定额内损耗3000.00元,不可抗力发生意外损耗11000.00元,仓库保管员玩
中国近代葡萄酒酿造业始于()。
某市工商局春节期间出台叫停“禁止自带酒水”等六项措施,引起了中国烹饪协会高调反弹,工商部门作出解释声明:这是对于不规范行为的合法做法。此事件引起社会极大反响,并持续发酵!请问你怎么看?
人民检察院决定逮捕犯罪嫌疑人、被告人的,由人民检察院执行。()
下列可以激活属性窗口的操作是()。
最新回复
(
0
)