首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α是n维单位列向量,A=E—ααT,证明:R(A)=n—1。
设α是n维单位列向量,A=E—ααT,证明:R(A)=n—1。
admin
2019-03-23
48
问题
设α是n维单位列向量,A=E—αα
T
,证明:R(A)=n—1。
选项
答案
因为A
2
=(E—αα
T
)(E—αα
T
)=E—2αα
T
+αα
T
αα
T
=E—αα
T
=A,所以A(E—A)=0,于是R(A)+R(E—A)≤n。 又因为R(A)+R(E—A)≥R(E)=n,所以R(A)+R(E—A)=n。由A=E—αα
T
得E—A=αα
T
,于是R(E—A)=R(αα
T
)=R(α)=1,故R(A)=n—1。
解析
转载请注明原文地址:https://kaotiyun.com/show/wUV4777K
0
考研数学二
相关试题推荐
设有一弹性轻绳(即重量忽略不计),上端固定,下端悬挂一质量为3克的物体,又已知此绳受一克重量的外力作用时伸长厘米,如果物体在绳子拉直但并未伸长时放下,问此物体向下运动到什么地方又开始上升?
在[0,+∞)上给定曲线y=y(x)>0,y(0)=2,y(x)有连续导数.已知x>0,[0,x]上一段绕x轴旋转所得侧面积等于该段旋转体的体积.求曲线y=y(x)的方程.
设f(x)在[a,b]上连续,f(x)≥0且∫abf(x)dx=0,求证:在[a,b]上f(x)≡0.
当x→0时下列无穷小是x的n阶无穷小,求阶数n:(Ⅰ)(Ⅱ)(1+tan2x)sinx-1;(Ⅲ)(Ⅳ)∫0xsint.sin(1-cost)2dt.
求证:(x∈(0,1)).
设α1,α2,…,αs和β1,β2,…,βt是两个线性无关的n维实向量组,并且每个αi和βi都正交,证明α1,α2,…,αs,β1,β2,…,βt线性无关.
设α1,α2,α3都是n维非零向量,证明:α1,α2,α3线性无关对任何数s,t,α1+sα3,α2+tα3都线性无关.
与α1=(1,-1,0,2)T,α2=(2,3,1,1)T,α3=(0,0,1,2)T都正交的单位向量是________.
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵,其中A*是A的伴随矩阵,E为n阶单位矩阵.(Ⅰ)计算并化简PQ;(Ⅱ)证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
设(1)求作对角矩阵D,使得B~D.(2)实数k满足什么条件时B正定?
随机试题
在会计制度设计时,必须完成并提交给各个方面的资料清单,各方面不包括
对行政管理中出现的失误,不仅要追究行政管理当事人责任,而且还要追究相关领导人责任的一种制度是【】
此时对诊断帮助最小的检查是对此患者的处置中,不适当的处置是
工业用地的最基本要求是“三通一平”,具体讲,在用地条件上,地形平坦,最适宜的地形坡度为()。
股份有限公司发起人可以用()作价出资。
A公司于2013年1月10日与B公司签订一份标的额为100万元的买卖合同,合同约定采用汇票结算方式。2月1日,A公司按照合同约定发出货物,B公司于2月10日签发一张见票后1个月付款的银行承兑汇票。3月5日A公司向C银行提示承兑并于当日获得承兑。3
2424×2423—2425×2422=()。
下列属于我国国家公务员的有()。
在美国这样的商业社会里,无论他们抛出了多少关乎人文、情怀、精神的辞藻,几乎所有艺术与技术,__________都是一门生意,即便是“教主”乔布斯和他的苹果也不例外。但这本身无可指责,也不__________这些公司和这些人缔造一个伟大的时代。依次填入画横线
A、Tosetupamooncolonyby2020.B、Tosendastronautsagaintothemoonby2020.C、Tocontinuethecurrentshuttlemissionsti
最新回复
(
0
)