首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1=(1,1,0,2)T,α2=(-1,1,2,4)T,α3=(2,3,a,7)T,α4=(-1,5,-3,a+b)T,β=(1,0,2,b)T,问a,b取何值时,(Ⅰ)B不能由α1,α2,α3,α4线性表示?(Ⅱ)B能用α1,α2,α3,α4线性表
已知α1=(1,1,0,2)T,α2=(-1,1,2,4)T,α3=(2,3,a,7)T,α4=(-1,5,-3,a+b)T,β=(1,0,2,b)T,问a,b取何值时,(Ⅰ)B不能由α1,α2,α3,α4线性表示?(Ⅱ)B能用α1,α2,α3,α4线性表
admin
2016-10-21
64
问题
已知α
1
=(1,1,0,2)
T
,α
2
=(-1,1,2,4)
T
,α
3
=(2,3,a,7)
T
,α
4
=(-1,5,-3,a+b)
T
,β=(1,0,2,b)
T
,问a,b取何值时,(Ⅰ)B不能由α
1
,α
2
,α
3
,α
4
线性表示?(Ⅱ)B能用α
1
,α
2
,α
3
,α
4
线性表出,且表示法唯一;(Ⅲ)β能用α
1
,α
2
,α
3
,α
4
线性表出,且表示法不唯一,并写出此时表达式.
选项
答案
设χ
1
α
1
+χ
2
α
2
+χ
3
α
3
+χ
3
α
4
=β.对增广矩阵(α
1
,α
2
,α
3
,α
4
[*]β)作初等行变换,有 [*] (Ⅰ)当a=1,b≠2或a=10,b≠-1时,方程组均无解.所以β不能由α
1
,α
2
,α
3
,α
4
线性表出. (Ⅱ)当a≠1且a≠10时,[*]b方程组均有唯一解.所以β能用α
1
,α
2
,α
3
,α
4
线性表示且表示法唯 一. (Ⅲ)方程组在两种情况下有无穷多解,即(1)当a=10,b=-1时,方程组有无穷多解: χ
4
=t,[*] 即β=[*] (2)当a=1,b=2时,方程组有无穷多解:χ
4
=-[*],χ
2
=t,χ
3
=1-2t,χ
1
=5t-[*], 即β=(5t-[*])α
1
+tα
2
+(1-2t)α
3
-[*]α
4
.
解析
转载请注明原文地址:https://kaotiyun.com/show/wWt4777K
0
考研数学二
相关试题推荐
[*]
求极限
设f(x)在x=2处连续,且,则曲线y=f(x)在点(2,f(2))处的切线方程为________.
求极限
设某商品从时刻0到时刻t的销售量为x(t)=kt,t∈[0,T](K>0),欲在T时将数量为A的该商品售完,试求:在时间段[0,T]上的平均剩余量。
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0).求L的方程.
设A,B为同阶可逆矩阵,则().
对(I)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,P+2)T,α4=(-2,-6,10,p)T.p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大线性无关组.
证明显然,f(x)是一个关于x的二次多项式,在闭区间[0,1]上连续,在开区间(0,1)内可导,且[*]故由罗尔定理知,存在ξ∈(0,1),使f’(ξ)=0.
随机试题
()是将自己将来所可能需要而又没有的东西的所有相关信息建立档案,包括品名、规格、价格、数量等,以便在需要时能使用。
为患者经鼻插胃管时,患者出现咳嗽、发绀、呼吸困难等现象,应【】
“潇湘”号运送该批平板电脑的航行路线要经过丁国的毗连区。根据《联合国海洋法公约》,下列选项正确的是:(2011年试卷一第97题)
甲一日在乙处看到一条名贵狗,双方商定价金5万元。现乙已向甲交付该狗,但未交付该狗的血统证明书。若乙请求甲付款,则乙()。
农业产业化经营的核心是经营一体化,其关键是龙头企业带动,基础是农户参与,本质是有关各方组成()的经济共同体。
管理是一种重要的生产要素,在生产经营活动中主要表现为管理者的组织协调和指挥运筹才能,在分配形式上主要有岗位工资制、承包制、年薪制、津贴制等。()
A.Anyway,theremustbesomesolution.B.Buttheydon’thaveanythingnow.C.Haveyoutriedsomepart-timejoboncampus?D.
In1904A.P.GianninibecameaboardmemberofaSanFranciscobank.Hediscoveredthatmostbankscaredonlyforthewealthy,
Whatisthetalkmainlyabout?
()保持冷藏()小心台阶()内有照片,请勿折叠()儿童谢绝入内
最新回复
(
0
)