首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵,其行列式|A|=-1,又A的伴随矩阵A*有一个特征值λ0,属于λ0的一个特征向量为α=(-1,-1,1),求a,b,c和λ0的值.
设矩阵,其行列式|A|=-1,又A的伴随矩阵A*有一个特征值λ0,属于λ0的一个特征向量为α=(-1,-1,1),求a,b,c和λ0的值.
admin
2021-01-19
33
问题
设矩阵
,其行列式|A|=-1,又A的伴随矩阵A
*
有一个特征值λ
0
,属于λ
0
的一个特征向量为α=(-1,-1,1),求a,b,c和λ
0
的值.
选项
答案
根据题设有 A
*
α=λ
0
α, 又A4
*
=|A|E=-E,于是 AA
*
α=Aλ
0
α=λ
0
Aα, 即 -α=λ
0
Aα, 也即[*] 由此可得[*] 解此方程组,得 λ
0
=1,b=-3,a=c。 又由|A|=-1和a=c,有 [*]=a-3=-1. 故a=c=2.因此 a=2,b=-3,c=2,λ
0
=1.
解析
[分析] 根据题设,有A
*
α=λ
0
α,可得三个方程,再加上|A|=-1,共四个方程、四个未知量,应该可以求出四个参数.但是A。的计算相当复杂,而题设已知的是A,这可通过关系式A
*
A=AA
*
=|A|E,在等式A
*
α=λ
0
α两端同乘以A后得到简化.
[评注] 涉及与伴随矩阵A有关的计算或证明问题,一般都是通过关系式AA
*
=A
*
A=|A|E进行分析和讨论,这一点应引起注意.
转载请注明原文地址:https://kaotiyun.com/show/wt84777K
0
考研数学二
相关试题推荐
讨论曲线y=4lnx+k与y=4x+ln4x的交点个数。
求极限
设函数f(x)满足xf’(x)-2f(x)=-x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D.若D绕x轴旋转一周所得旋转体体积最小,求:(1)曲线y=f(x);(2)曲线在原点处的切线与曲线及直线x=1所围成的平面图形的面积.
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α3=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,一1,一1,1)T,β2=(1,一1,1,一1,2)T,β3=
曲线y=x2(x≥0)上某点处作切线,使该曲线、切线与x轴所围成的面积为1/12,求切点坐标、切线方程,并求此图形绕X轴旋转一周所成立体的体积.
求下列函数的偏导数:
有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面,容器的底面圆的半径为2m。根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设注入液体前,容器内无液体)。求曲线x=φ(
设一阶非齐次线性微分方程y’+p(x)y=Q(x)有两个线性无关的解y1,y2,若αy1+βy2也是该方程的解,则应有α+β=_______.
设函数f(x)处处可导,且0≤f’(x)≤(k>0为常数),又设x0为任意一点,数列{x0}满足xn=f(xn-1)(n=1,2,…),试证:当n→∞时,数列{xn}的极限存在.
随机试题
奥氏体钢与珠光体钢焊接时,最好选用()接近于珠光体钢的镍基合金型材料。
要提高油藏注水开发整体经济效益,必须动用各类油层的储量。只有根据油藏的地质特点,合理划分层系,采取分层开采,才能扩大注入水波及体积,增加储量动用厚度。()
儿童糖尿病急症死亡的主要原因是()
下列入题技巧中,不属于迂回人题的是()
主要是对国际贸易活动中产生的问题进行调节的组织是_________。
考核抗结核治疗疗效的主要指标是
牙齿萌出各项中错误的是
A.神经系统抑制效应增强B.增加肝中毒危险C.出血倾向D.血压降低,呼吸抑制的风险E.以上都不是巴比妥类药与中枢神经系统抑制剂或单胺氧化酶抑制剂合用,可引起()。
符合()情况的工业锅炉应采用热电联产。
有关化学教学内容表述正确的是()。
最新回复
(
0
)