首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵,其行列式|A|=-1,又A的伴随矩阵A*有一个特征值λ0,属于λ0的一个特征向量为α=(-1,-1,1),求a,b,c和λ0的值.
设矩阵,其行列式|A|=-1,又A的伴随矩阵A*有一个特征值λ0,属于λ0的一个特征向量为α=(-1,-1,1),求a,b,c和λ0的值.
admin
2021-01-19
37
问题
设矩阵
,其行列式|A|=-1,又A的伴随矩阵A
*
有一个特征值λ
0
,属于λ
0
的一个特征向量为α=(-1,-1,1),求a,b,c和λ
0
的值.
选项
答案
根据题设有 A
*
α=λ
0
α, 又A4
*
=|A|E=-E,于是 AA
*
α=Aλ
0
α=λ
0
Aα, 即 -α=λ
0
Aα, 也即[*] 由此可得[*] 解此方程组,得 λ
0
=1,b=-3,a=c。 又由|A|=-1和a=c,有 [*]=a-3=-1. 故a=c=2.因此 a=2,b=-3,c=2,λ
0
=1.
解析
[分析] 根据题设,有A
*
α=λ
0
α,可得三个方程,再加上|A|=-1,共四个方程、四个未知量,应该可以求出四个参数.但是A。的计算相当复杂,而题设已知的是A,这可通过关系式A
*
A=AA
*
=|A|E,在等式A
*
α=λ
0
α两端同乘以A后得到简化.
[评注] 涉及与伴随矩阵A有关的计算或证明问题,一般都是通过关系式AA
*
=A
*
A=|A|E进行分析和讨论,这一点应引起注意.
转载请注明原文地址:https://kaotiyun.com/show/wt84777K
0
考研数学二
相关试题推荐
计算行列式
设A为n阶方阵,k为正整数,线性方程组AkX=0有解向量α,但Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α线性无关.
已知一条抛物线通过χ轴上两点A(1,0),B(3,0),求证:两坐标轴与该抛物线所围成的面积等于χ轴与该抛物线所围成的面积.
设f(x)在[0,+∞)上连续,非负,且以T为周期,证明:
曲线y=x2(x≥0)上某点处作切线,使该曲线、切线与x轴所围成的面积为1/12,求切点坐标、切线方程,并求此图形绕X轴旋转一周所成立体的体积.
设函数f(y)的反函数f一1(x)及f’[f一1(x)]与f"[f一1(x)]都存在,且f一1[f一1(x)]≠0.证明:。
设f(x)在(a,b)内可导,证明:,x0∈(a,b)且x≠x0时,f’(a)在(a,b)单调减少的充要条件是f(x0)+f’(x0)(x-x0)>f(x).(*)
有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面,容器的底面圆的半径为2m。根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设注入液体前,容器内无液体)。求曲线x=φ(
求下列极限:
随机试题
心房纤颤发生后至少可使心排血量下降
A、《黄帝内经》B、宋国宾《医业伦理学》C、孙思邈《备急千金要方》D、希波克拉底《希波克拉底誓言》E、帕茨瓦尔《医学伦理学》奠定西方医学人道传统的文献是
关于物资需求计划的说法,正确的是()。
根据《注册建造师管理规定》,注册建造师的下列行为违法的有()。
下列哪一条符合儿童动作发展的规律()
14世纪欧洲学校的课程有算数、几何、天文等,到16世纪增加了地理和力学,17世纪又增加代数、三角、物理和化学等。这说明对教学内容变化产生影响的是()
设矩阵A、B的行数都是m.证明:矩阵方程AX=B有解的充分必要条件是r(A)=r(A┆B).
下列关于世界上第一台电子计算机ENIAC的叙述中,错误的是()。
FoodandYourLifeStagesThenutritionalneedsofthehumanbodychangeatdifferentlifestages.Tobefitandhealthy,it
HowtoBuildTeamSpiritandGetBestSalesPerformanceA)Itisawell-knownfactthatanorganisationcanachieveagreatersuc
最新回复
(
0
)