首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α3=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,一1,一1,1)T,β2=(1,一1,1,一1,2)T,β3=
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α3=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,一1,一1,1)T,β2=(1,一1,1,一1,2)T,β3=
admin
2019-06-28
33
问题
设线性方程组(1)Ax=0的一个基础解系为α
1
=(1,1,1,0,2)
T
,α
2
=(1,1,0,1,1)
T
,α
3
=(1,0,1,1,2)
T
。线性方程组(2)Bx=0的一个基础解系为β
1
=(1,1,一1,一1,1)
T
,β
2
=(1,一1,1,一1,2)
T
,β
3
=(1,一1,一1,1,1)
T
。求
线性方程组(3)
的通解;
选项
答案
线性方程组(1)Ax=0的通解为x=k
1
α
1
+k
2
α
2
+k
2
α
3
;线性方程组(2)Bx=0的通解为x=l
1
β
1
+l
2
β
2
+l
3
β
3
;线性方程组(3)[*] 的解是方程组(1)和(2)的公共解,故考虑线性方程组(4)k
1
α
1
+k
2
α
2
+k
3
α
3
=l
1
β
1
+l
2
β
2
+l
3
β
3
,将其系数矩阵作初等行变换,即[*] 则方程组(4)的一个基础解系是(一2,0,2,一1,0,1)
T
。将其代入(4)得到方程组(3)的一个基础解系ξ=一2α
1
+2α
2
=一β
1
+β
3
=(0,一2,0,2,0)
T
。所以方程组(3)的通解为x=k(0,一1,0,1,0)
T
,其中k为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/JZV4777K
0
考研数学二
相关试题推荐
求极限。
已知三阶矩阵A与三维非零列向量α,若向量组α,Aα,A2α线性无关,而A3α=3Aα一2A2α,那么矩阵A属于特征值λ=一3的特征向量是()
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。利用上问的结果判断矩阵B一CTA-1C是否为正定矩阵,并证明结论。
设A,B为同阶方阵。若A,B相似,证明A,B的特征多项式相等;
设函数=_______
A、 B、 C、 D、 C积分区域D可表示为D={(x,y)|一1≤x≤0,一x≤y≤2一x2}∪{(x,y)|0≤x≤1,x≤y≤2一x2}.D关于y轴对称,而xy关于x为奇函数,因此
设已知A有三个线性无关的特征向量且λ=2为矩阵A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
[2005年]设D={(x,y)∣x2+y2≤√2,x≥0,y≥0),[1+x2+y2]表示不超过1+x2+y2的最大整数,计算二重积分xy[1+x2+y2]dxdy.
随机试题
爱因斯坦所说的“猪栏的理想”,指的是
A.药品指标代理组织B.药品销售代理组织C.药品物流组织D.传统药品交易中介服务组织E.网上药品交易中介服务组织
计量检测中,根据使用频率及生产经营情况,暂停使用的应标明( )。
血压计()
下列关于战略规划的说法不正确的是()。
下列属于上海老饭店特色名菜的有()。
关于陈述性知识,下列说法正确的是()
世上没有一种东西是一成不变的,一切都在变动之中,包括民族文化。冷战后日益加速的全球化正给地球人带来前所未有的文化冲突,而人类文化从来都是在冲突中融合,在融合中冲突的。全球化正在改变着中国人的生产方式和生活方式。中国人早已走向世界,在全世界寻找机会,表现出了
Ontheoccasionofhis80thbirthday,SirWinstonChurchillwaspresentedwithhisportraitbyawell-knownmodemartist,Graham
We_______(坚持扩大内需方针)andcontinuedtotakemeasurestoexercisemacro-controlovernewdevelopmentsinthecourseofeconomicope
最新回复
(
0
)