首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α3=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,一1,一1,1)T,β2=(1,一1,1,一1,2)T,β3=
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α3=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,一1,一1,1)T,β2=(1,一1,1,一1,2)T,β3=
admin
2019-06-28
60
问题
设线性方程组(1)Ax=0的一个基础解系为α
1
=(1,1,1,0,2)
T
,α
2
=(1,1,0,1,1)
T
,α
3
=(1,0,1,1,2)
T
。线性方程组(2)Bx=0的一个基础解系为β
1
=(1,1,一1,一1,1)
T
,β
2
=(1,一1,1,一1,2)
T
,β
3
=(1,一1,一1,1,1)
T
。求
线性方程组(3)
的通解;
选项
答案
线性方程组(1)Ax=0的通解为x=k
1
α
1
+k
2
α
2
+k
2
α
3
;线性方程组(2)Bx=0的通解为x=l
1
β
1
+l
2
β
2
+l
3
β
3
;线性方程组(3)[*] 的解是方程组(1)和(2)的公共解,故考虑线性方程组(4)k
1
α
1
+k
2
α
2
+k
3
α
3
=l
1
β
1
+l
2
β
2
+l
3
β
3
,将其系数矩阵作初等行变换,即[*] 则方程组(4)的一个基础解系是(一2,0,2,一1,0,1)
T
。将其代入(4)得到方程组(3)的一个基础解系ξ=一2α
1
+2α
2
=一β
1
+β
3
=(0,一2,0,2,0)
T
。所以方程组(3)的通解为x=k(0,一1,0,1,0)
T
,其中k为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/JZV4777K
0
考研数学二
相关试题推荐
设f(x,y)=则f(x,y)在点(0,0)处()
设A为m阶实对称矩阵且正定,BT为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是r(B)=n。
方程组有非零解,则k=________。
设A是一个五阶矩阵,A*是A的伴随矩阵,若η*,η2是齐次线性方程组Ax=0的两个线性无关的解,则r(A*)=_________。
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5一4A3+E,其中E为三阶单位矩阵。求矩阵B。
设向量组(I):b1,…,br能由向量组(Ⅱ):a1,…,as线性表示为(b1,…,br)=(a1,…,as)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅱ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
设曲线y=lnx与y=k相切,则公共切线为_______.
设A,B为3阶相似矩阵,且|2E+A|=0,λ1=1,λ2=一1为B的两个特征值,则行列式|A+2AB|=____________.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.判断矩阵A可否对角化.
∫χ2arctanχdχ.
随机试题
项目竣工质量验收是施工质量控制的最后一个环节,以下关于竣工质量验收条件的说法,正确的是()。
下列现象中,属于光缆传输线路故障的有哪些()
求微分方程x2y’=xy-y2的通解.
女性,35岁,前臂被铁棒击伤,X线片显示尺、桡骨骨折,近端平行排列,而骨折远端则桡骨重叠于尺骨之上。在治疗和康复中关键要防止
痄腮易并发睾丸肿痛的机理是
【背景资料】某工业项目三期扩建工程总建筑面积3.2万平方米,由三个单位工程构成,分别为筒中筒结构塔体、13个连体筒仓和附属建筑,建(构)筑物最大高度为60m,其中塔体最大开挖深度6m,基坑面积19m×16.5m。地层结构自上而下依次为杂填土层(平
审计监督区别于其他经济监督的根本特征是()。
眼睛的视网膜上有很多感光细胞,当光聚到视网膜上,感光细胞有了神经冲动,沿着视神经传到大脑,我们就看到了物体。()
下列哪项不是教师申诉制度的环节?()
从历史上看,美国的繁荣依靠企业不断涌现的新发明,这些发明促使汽车、飞机制造、化工、制药、电子、计算机等领域出现了一批新工业和新产品。因此,经济不断壮大的最好保障是企业在科学研究和发展方面增加经费。以下哪项如果为真,最能削弱以上命题?
最新回复
(
0
)