首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵 当a为何值时,方程AX=B无解、有唯一解、有无穷多解?在有解时,求解此方程.
设矩阵 当a为何值时,方程AX=B无解、有唯一解、有无穷多解?在有解时,求解此方程.
admin
2018-08-03
49
问题
设矩阵
当a为何值时,方程AX=B无解、有唯一解、有无穷多解?在有解时,求解此方程.
选项
答案
对矩阵[A┆B]施以初等行变换 [*] (1)当a≠1且a≠一2时,矩阵A的秩等于矩阵[A┆B]的秩且等于3,故此时方程Ax=B有唯一解.由 [*] 得方程Ax=B的唯一解为 [*] (2)当a=1时,由于 [*] 记X=[x
1
┆x
2
],则得方程组Ax
1
=[*]: 得方程组Ax
2
=[*], 所以此时方程AX=B有无穷多解,且 X=[x
1
┆x
2
]=[*],其中k
1
,k
2
为任意常数. (3)当a=一2时,由 [*] 可知矩阵A的秩小于矩阵[A┆B]的秩,所以此时方程AX=B无解.
解析
转载请注明原文地址:https://kaotiyun.com/show/wug4777K
0
考研数学一
相关试题推荐
设f(x)在[a,b]上连续,且f"(x)>0,对任意的x1,x2∈[a,b]及0<λ<1,证明:f[λx1+(1一λ)x2]≤λf(x1)+(1一λ)f(x2).
设f(x)在x0的邻域内四阶可导,且|f(x)|≤M(M>0).证明:对此邻域内任一异于x0的点x,有其中x’为x关于x0的对称点.
某种食品防腐剂含量X服从N(μ,σ2)分布,从总体中任取20件产品,测得其防腐剂平均含量为=10.2,标准差为s=0.5099,问可否认为该厂生产的产品防腐剂含量显著大于10(其中显著性水平为α=0.05)?
设f(x)在[a,b]上连续,任取xi∈[a,b](i=1,2,…,n),任取ki>0(i=1,2,…,n),证明:存在ξ∈[a,b],使得k1f(x1)+k2f(x2)+…+knf(xn)=(k1+k2+…+kn)f(ξ).
设由自动生产线加工的某种零件的内径X(毫米)服从正态分布N(μ,1),内径小于10或大于12为不合格品,其余为合格产品.销售合格品获利,销售不合格产品亏损,已知销售利润T(单位:元)与销售零件的内径X有如下关系:问平均内径μ取何值时,销售一个零件的
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=(1)计算PQ;(2)证明PQ可逆的充分必要条件是αTA-1α≠b.
设随机变量X服从参数λ=的指数分布,令Y=min(X,2),求随机变量Y的分布函数F(y).
已知总体X的密度函数为其中θ,β为未知参数,X1,…,Xn为简单随机样本,求θ和β的矩估计量.
已知x1,x2,…,x10是取自正态总体N(μ,1)的10个观测值,统计假设为H0:μ=μ0=0;H1:μ≠0.(Ⅰ)如果检验的显著性水平α=0.05,且拒绝域R={||≥k},求k的值;(Ⅱ)若已知=1,是否可以据此样本推断μ=0(α=0.05)?
随机试题
商品的自愿让渡以________为条件。
新民主主义革命总路线的核心是【】
急性再障早期的临床特点为
某中国企业与某法国公司拟设立一家中外合作经营企业,中国企业以土地使用权出资,作价400万元,法国公司以现金和机器设备出资,作价200万元,合作企业经营期限8年。以下为某律师提供的法国公司先行回收投资的方法,其中不符合法律规定的是:()
什么是邀请招标方式?什么情况下适宜采用邀请招标方式?
建筑工程施工现场应至少()开展一次定期安全检查。
隋代李春设计的赵州桥是世界上最古老的实肩式石拱桥。()
小李买了一套房子,向银行借得个人住房贷款本金15万元,还款期限20年,采用等额本金还款法,截止到上个还款期已经归还5万元本金,本月需归还本金和利息共1300元,则当前的月利率是()。
国务院设立办公厅,由()领导。
首先将系统中的关键部分设计出来,再让系统其余部分的设计去适应它们,这称为()。
最新回复
(
0
)