首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵 当a为何值时,方程AX=B无解、有唯一解、有无穷多解?在有解时,求解此方程.
设矩阵 当a为何值时,方程AX=B无解、有唯一解、有无穷多解?在有解时,求解此方程.
admin
2018-08-03
37
问题
设矩阵
当a为何值时,方程AX=B无解、有唯一解、有无穷多解?在有解时,求解此方程.
选项
答案
对矩阵[A┆B]施以初等行变换 [*] (1)当a≠1且a≠一2时,矩阵A的秩等于矩阵[A┆B]的秩且等于3,故此时方程Ax=B有唯一解.由 [*] 得方程Ax=B的唯一解为 [*] (2)当a=1时,由于 [*] 记X=[x
1
┆x
2
],则得方程组Ax
1
=[*]: 得方程组Ax
2
=[*], 所以此时方程AX=B有无穷多解,且 X=[x
1
┆x
2
]=[*],其中k
1
,k
2
为任意常数. (3)当a=一2时,由 [*] 可知矩阵A的秩小于矩阵[A┆B]的秩,所以此时方程AX=B无解.
解析
转载请注明原文地址:https://kaotiyun.com/show/wug4777K
0
考研数学一
相关试题推荐
设半径为R的球面S的球心在定球面x2+y2+z2=a2(a>0)上,问R取何值时,球面S在定球面内的面积最大?
设f(x)在[a,b]上连续,任取xi∈[a,b](i=1,2,…,n),任取ki>0(i=1,2,…,n),证明:存在ξ∈[a,b],使得k1f(x1)+k2f(x2)+…+knf(xn)=(k1+k2+…+kn)f(ξ).
某商店经销某种商品,每周进货数量X与顾客对该种商品的需求量Y之间是相互独立的,且都服从[10,20]上的均匀分布.商店每出售一单位商品可获利1000元;若需求量超过了进货量,商店可从其他商店调剂供应,这时每单位商品获利500元,计算此商店经销该种商品每周所
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=(1)计算PQ;(2)证明PQ可逆的充分必要条件是αTA-1α≠b.
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+xy2]dy=0为全微分方程,求f(x)及该全微分方程的通解.
设二维随机变量(X1,Y1)与(X2,Y2)的联合概率密度分别为求:(Ⅰ)常数K1,K2的值;(Ⅱ)Xi,Yi(i=1,2)的边缘概率密度;(Ⅲ)P{Xi>2Yi}(i=1,2).
已知x1,x2,…,x10是取自正态总体N(μ,1)的10个观测值,统计假设为H0:μ=μ0=0;H1:μ≠0.(Ⅰ)如果检验的显著性水平α=0.05,且拒绝域R={||≥k},求k的值;(Ⅱ)若已知=1,是否可以据此样本推断μ=0(α=0.05)?
用配方法化二次型x1x2+2x2x3为标准形,并写出所用满秩线性变换.
已知线性方程组的通解是(2,1,0,3)T+k(1,一1,2,0)T,如令αi=(ai,bi,ci,di)T,i=1,2,…,5.试问:(Ⅰ)α1能否由α2,α3,α4线性表出?(Ⅱ)α4能否由α1,α2,α3线性表出?并说明理由.
随机试题
无名指偏长、粗壮的人,大多思维敏捷。()
十六进制数2C716对应的十进制数为_________。
流行性出血热患者下列哪项病变不能作为本病病理诊断依据
A.描述流行病学研究B.病例对照研究C.队列研究D.实验流行病学研究E.分析性研究一般来说,流行病学研究的起点是
根据民事诉讼法及相关规定,下列哪些情形下民事诉讼终结?
Duringclass,theteacherleadsstudentstomemorizetheimportantpointsoftheteachingcontent.Ononehand,theteacherhelp
下列属于可控的、内部的、不稳定的归因因素是()。
把下面的六个图形分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是:
欧拉方程x2y"+xy’-4y=0满足条件y(1)=1,y’(1)=2的解为y=________。
A、 B、 C、 B
最新回复
(
0
)