首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且证明: 存在ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且证明: 存在ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0.
admin
2018-04-15
42
问题
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且
证明:
存在ξ
1
,ξ
2
∈(0,3),使得f’(ξ
1
)=f’(ξ
2
)=0.
选项
答案
令[*]F′(x)=f(x), [*]其中0<c<2. 因为f(x)在[2,3]上连续,所以f(x)在[2,3]上取到最小值m和最大值M, [*] 由介值定理,存在x
0
∈[2,3],使得[*]即f(2)+f(3)=2f(x
0
), 于是f(0)=f(c)=f(x
0
), 由罗尔定理,存在ξ
1
∈(0,c)[*](0,3),ξ
2
∈(c,x
0
)[*](0,3),使得f′(ξ
1
)=f′(ξ
2
)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/wvX4777K
0
考研数学三
相关试题推荐
已知η是非齐次线性方程组Ax=b的一个特解,ξ1,ξ2,…,ξn-r,是对应齐次方程组Ax=0的基础解系,证明:η,η+ξ1,η+ξ2,…,η+ξn-r是Ax=b的n-r+1个线性无关解;
设A是3阶矩阵,有特征值λ1=0,λ2=1,λ3=一1.对应的特征向量分别是ξ1,ξ2,ξ3,k1,k2,k3为任意常数,则非齐次线性方程组Ax=ξ2+ξ3的通解是()
(Ⅰ)叙述并证明费马(Fermat)定理(即可导函数极值点的必要条件); (Ⅱ)叙述并证明极值的第一充分条件.
设线性齐次方程组(2E—A)x=0有通解x=kξ1=k(-1,1,1)T,其中k是任意常数,A是二次型f(x1,x2,x3)=xTAx的对应矩阵,且r(A)=1.(Ⅰ)问η1=(1,1,0)T,η=(1,一1,0)T是否是方程组Ax=0的解向量,
设x>0,则微分方程的通解为y=_________.
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别为α,β的转置.证明:r(A)≤2.
进行独立重复试验直到试验取得首次成功为止,设每次试验的成功率都是p(0<P<1).现进行10批试验,其各批试验次数分别为5,4,8,3,4,7,3,1,2,3.求:(Ⅰ)试验成功率P的矩估计值;(Ⅱ)试验失败率q的最大似然估计值.
独立重复某项试验,直到成功为止.每次试验成功的概率为p,假设前5次试验每次试验费用为100元,从第6次起,每次试验费用为80元,试求该项试验总费用的期望值W.
某集邮爱好者有一个珍品邮票,如果现在(t=0)就出售,总收入为R0元.如果收藏起来待来日出售,t年末总收入为R(t)=R0eξ(t),其中ξ(t)为随机变量,服从正态分布N(,1),假定银行年利率为r,并且以连续复利计息.试求收藏多少年后,再出售可使得总收
编号为1,2,3的三个球随意放入编号为1,2,3的三个盒子中,每盒仅放一个球,令求(X1,X2)的联合分布。
随机试题
物质以分子或离子的形态均匀地分散到另一种物质中的过程,称为溶解。
男性,50岁,右阴囊可复性肿物14年,不能还纳1天,伴呕吐,停止排气排便。查体:心率108次/分,血压150/105mmHg,右阴囊肿大,压痛明显,腹部膨隆,肠鸣音亢进;白细胞计数14×109/L,中性粒细胞百分比85%。对该患者的最佳处理措施是
下列说法中正确的有()。
从事生产经营的纳税人,经确定实行查定征收方式的,其在营业执照核准的经营期限内需要停业的,应当在停业前向税务机关申报办理停业登记。()
消费者协会的性质是()。
一般适应于商务洽谈的提议方的让步策略是()。
城市化的根本任务是()。
求解线性方程组。
Readthefollowingpassagecarefullyandthenparaphrasethenumberedandunderlinedparts.("Paraphrase"means"toexplainthe
Imaginebeingaskedtospendtwelveyearsinaschoolwhichconsistsonlyofmembersofyourownsex.Howwouldyou【36】?Unless
最新回复
(
0
)