首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知f(x)在(-∞,+∞)内有定义,且对任意x,y满足f(x+y)=eyf(x)+exf(y),又f(x)在点x=0处可导,且f’(0)=e,则f(x)=_______.
已知f(x)在(-∞,+∞)内有定义,且对任意x,y满足f(x+y)=eyf(x)+exf(y),又f(x)在点x=0处可导,且f’(0)=e,则f(x)=_______.
admin
2017-12-11
63
问题
已知f(x)在(-∞,+∞)内有定义,且对任意x,y满足f(x+y)=e
y
f(x)+e
x
f(y),又f(x)在点x=0处可导,且f’(0)=e,则f(x)=_______.
选项
答案
xe
x1
解析
这是一个已知函数方程求函数问题,其一般方法是将已知函数方程两边求导数,得到微分方程,解微分方程得到所求函数.但由于本题f(x)仅已知其在(-∞,+∞)内有定义,条件太弱,方程两边不能求导数,所以考虑用导数的定义建立微分方程.
在已知等式中,取x=y=0,得f(0)=0.由导数的定义,得
=f(x)+e
x
f’(0)=f(x)+e
x+1
.
于是,f(x)满足的微分方程为
这是一阶线性微分方程,可以利用一阶线性微分方程的通解公式求解,也可以用下面简便方法求解.
因为f’(x)-f’(x)=e
x+1
,将方程两边乘以e
-x
,得
e
-x
f’(x)-e
-x
f’(x)=e, 即[e
-x
f(x)]’=e,
等式两边积分,得 e
-x
f(x)=ex+C,
所以 f(x)=Ce
x
+xe
x+1
,
由f(0)=0,得C=0,故f(x)=xe
x+1
.
转载请注明原文地址:https://kaotiyun.com/show/wwr4777K
0
考研数学一
相关试题推荐
设平面曲线L上一点M处的曲率半径为ρ,曲率中心为A,AM为L在点M处的法线,法线上的两点P,Q分别位于L的两侧,其中P在AM上,Q在AM的延长线AN上,若P,Q满足|AP|.|AQ|=ρ2,称P,Q关于L对称.设L:,P点的坐标为.
设f(x)是奇函数,且对一切x有f(x+2)=f(x)+f(2),又x(1)=a,a为常数,n为整数,则f(n)=__________.
设随机变量X,Y独立同分布,且设随机变量U=max{X,Y),V=min{X,Y).求Z=UV的分布;
设随机变量X,Y的分布函数分别为F1(x),F2(x),为使得F(x)=aF1(x)+bF2(x)为某一随机变量的分布函数,则有().
设事件A,B,C两两独立,则事件A,B,C相互独立的充要条件是().
设A,B为三阶矩阵,且AB=A—B,若λ1,λ2,λ3为A的三个不同的特征值,证明:AB=BA;
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
设A(一1,0,4),π:3x一4y+z+10=0,L:,求一条过点A与平面π平行,且与直线L相交的直线方程.
随机试题
社会主义精神文明建设的目标是( )
A、Heplaysballgamesonly.B、Hegoestoplaceswheremajorsportsgamesareheld.C、Heneverplaysanysports.D、Hetalksalot
按照《药品管理法》规定,下列哪项不属于劣药( )。
A.手少阴心经B.手阳明大肠经C.手厥阴心包经D.手太阳小肠经E.足阳明胃经循行于上肢内侧后缘的经脉是
工程索赔收入属于施工企业的()。
隋朝的南北大运河沟通的水系有()。
根据联合国《儿童权利公约》规定,各缔约国应采取措施保障儿童获得保健服务的权利,确认儿童有权享受()。
鸳鸯:凤凰:雄雌
郑兵的孩子即将升高中。郑兵发现,在当地中学,学生与老师的比例低的学校,学生的高考成绩普遍都比较好。郑兵因此决定,让他的孩子选择学生总人数最少的学校就读。以下哪项最为恰当地指出了郑兵上述决定中存在的漏洞?
GrossNationalHappinessInthelastcentury,newtechnologyimprovedthelivesofmanypeopleinmanycountries.However,o
最新回复
(
0
)