首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2012年)设区域D由曲线y=sin,x=,y=1围成,则(xy5-1)dxdy=
(2012年)设区域D由曲线y=sin,x=,y=1围成,则(xy5-1)dxdy=
admin
2018-07-30
108
问题
(2012年)设区域D由曲线y=sin,x=
,y=1围成,则
(xy
5
-1)dxdy=
选项
A、π.
B、2.
C、-2.
D、-π.
答案
B
解析
方法1:Q(α
1
,α
2
,α
2
,α
3
)=(α
1
,α
2
,α
3
)
=PM
其中,矩阵M=
,易求出M
-1
=
于是,Q
-1
AQ=(PM)
-1
A(PM)=M
-1
(P
-1
AP)M
因此选(B).
方法2:已知A(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)
(Aα
1
,Aα
2
,Aα
3
)=(α
1
,α
2
,2α
3
)
Aα
1
=α
1
,Aα
2
=α
2
,Aα
3
=2α
3
A(α
1
+α
2
)=Aα
1
+Aα
2
=α
1
+α
2
AQ=A(α
1
+α
2
,α
2
,α
3
)
=(A(α
1
+α
2
),Aα
2
,Aα
3
)=(α
1
+α
2
,α
2
,2α
3
)
=(α
1
+α
2
,α
2
,α
3
)
两端左乘Q
-1
,得Q
-1
AQ=
,故选(B).
方法3:由已知A相似于对角矩阵diag(1,1,2),知α
1
,α
2
,α
3
是A的3个线性无关特征向量,且依次属于特征值1,1,2.α
1
+α
2
≠0(否则α
1
+α
2
线性相关,与α
1
,α
2
,α
3
线性无关矛盾),且A(α
1
+α
2
)=Aα
1
+Aα
2
=α
1
+α
2
,因此α
1
+α
2
是A的属于特征值1的一个特征向量.
从而知α
1
+α
2
,α
2
,α
3
是A的3个线性无关特征向量,且依次属于特征值1,1,2,因此利用矩阵相似对角化可写出
(α
1
+α
2
,α
2
,α
3
)
-1
A(α
1
+α
2
,α
2
,α
3
)=diag(1.1,2),
即Q
-1
AQ=diag(1,1,2).因此选(B).
转载请注明原文地址:https://kaotiyun.com/show/x9j4777K
0
考研数学二
相关试题推荐
A是二阶矩阵,有特征值λ1=1,λ2=2,f(x)=x2一3x+4,则f(A)=________.
设f(x)在[0,0](a>0)上非负且二阶可导,且f(0)=0,f’’(x)>0,为y=f(x),y=0,x=a围成区域的形心,证明:
(2011年试题,二)微分方程y’+y=e-x满足条件y(0)=0的解为y=_________
曲线y=x(x-1)(2-x)与x轴所围成的图形的面积可表示为().
设非齐次线性方程组有三个线性无关解α1,α2,α3,(Ⅰ)证明系数矩阵的秩r(A)=2;(Ⅱ)求常数a,b及通解.
设矩阵A=b=若集合Ω={1,2},则线性方程组Ax=b有无穷多解的充分必要条件为
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
设A为三阶矩阵,Aαi=iαi(i=1,2,3),,求A.
求曲y=x2-2x、y=0、x=1、x=3所围成区域的面积S,并求该区域绕y轴旋转一周所得旋转体的体积V.
随机试题
腰间盘突出症与椎管内肿瘤最有鉴别意义的辅助检查是
某银行股份公司主要经营存、贷款业务,并提供其他金融服务,2009年第二季度发生了以下几笔业务:(1)“其他贷款利息收入”130万元,其中票据贴现贷款利息收入30万元;“金融机构往来利息收入”账户反映同业往来利息收入25万元;(2)本期取
下列说法错误的是()。
艺术真实
①所有的茶罐都是放在茶箱里,所有茶箱都是带锁的,而钥匙,则掌管在主人那里②所以在茶箱和茶罐的设计制作上,为贵族服务的手工艺人可以算是极尽所能③所以用来盛放茶叶的器皿也小巧,并且和现在国人喜爱的爱马仕手提包一样,需要能摆出来炫耀④如果有客人来访,仆人把
在一战后英国继续推行“大陆均势”外交政策的表现中,不正确的是()。
[*]
"AtBoozAllen,we’reshapingthefutureofcyber-security,"trumpetsarecruitingmessageonthewebsiteofBoozAllenHamilton
文件服务器以什么方式管理共享文件,提供文件服务?
Ithinkthebookonlightmusicisworth______.
最新回复
(
0
)