首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3,α4,α5),其中α1,α2,α3线性无关,且α2=3α1-α3-α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
设A=(α1,α2,α3,α4,α5),其中α1,α2,α3线性无关,且α2=3α1-α3-α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
admin
2019-08-23
76
问题
设A=(α
1
,α
2
,α
3
,α
4
,α
5
),其中α
1
,α
2
,α
3
线性无关,且α
2
=3α
1
-α
3
-α
5
,α
4
=2α
1
+α
3
+6α
5
,求方程组AX=0的通解.
选项
答案
因为α
1
,α
3
,α
5
线性无关,又α
2
,α
4
可由α
1
,α
3
,α
5
线性表示,所以r(A)=3,齐次线性万程组AX=0的基础解系含有两个线性无关的解向量. 由α
2
=3α
1
-α
3
-α
5
,α
4
=2α
1
+α
3
+6α
5
得方程组AX=0的两个解为 ξ
1
=(3,1,-1,0,-1)
T
,ξ
2
=(2,0,1,-1,6)
T
, 故AX=0的通解为k
1
(3,-1,-1,0,-1)
T
+k
2
(2,0,1,-1,6)
T
(k
1
,k
2
为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/xBA4777K
0
考研数学二
相关试题推荐
已知函数z=f(x,y)的全微分dz=2xdx一2ydy,并且f(1,1)=2。求f(x,y)在椭圆域D={(x,y)|}上的最大值和最小值。
设有线性方程组已知(1,一1,1,一1)T是该方程组的一个解,求方程组所有的解。
设n阶矩阵A的伴随矩阵A*≠O,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系()
设,方程组Ax=0有非零解。α是一个三维非零列向量,若Ax=0的任一解向量都可由α线性表出,则a=()
设z=z(x,y)是由方程x2+y2一z=φ(x+y+z)所确定的函数,其中φ具有二阶导数且φ’≠一1。记u(x,y)=求[img][/img]
设矩阵的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化。
设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1。对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周得一旋转体。若该旋转体的侧面积在数值上等于其体积的2倍,求函数f(x)的表达式。
设,其中f,g均可微,则=_______.
设A=有三个线性无关的特征向量.求A的特征向量;
随机试题
Wemaylookattheworldaroundus,butsomehowwemanagenottoseeituntilwhateverwe’vebecomeusedtosuddenlydisappears.
求z=x2ey+(x一1)arctan在点(1,0)处的一阶偏导数,全微分.
小儿患丹痧,常见其舌状如杨梅小儿食橄榄、杨梅常见舌苔为
可出现胆囊显著肿大无压痛,伴黄疸进行性加重的疾病是
APT理论的创始人是( )。
储蓄国债发行的对象不包括()
银行一般通过()等渠道和方式,向拟申请个人住房贷款的个人提供有关信息咨询服务。
李某为公司仓库保管员。某日,两歹徒为逼李某交出仓库钥匙而持刀追打李某,李某被打成重伤,无奈之中李某抢了路边正在停车的黄某的摩托车逃走。李某抢走摩托车的行为()。
下列叙述中正确的是
WheredidHankandhisfamilylive?
最新回复
(
0
)