首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3,α4,α5),其中α1,α2,α3线性无关,且α2=3α1-α3-α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
设A=(α1,α2,α3,α4,α5),其中α1,α2,α3线性无关,且α2=3α1-α3-α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
admin
2019-08-23
38
问题
设A=(α
1
,α
2
,α
3
,α
4
,α
5
),其中α
1
,α
2
,α
3
线性无关,且α
2
=3α
1
-α
3
-α
5
,α
4
=2α
1
+α
3
+6α
5
,求方程组AX=0的通解.
选项
答案
因为α
1
,α
3
,α
5
线性无关,又α
2
,α
4
可由α
1
,α
3
,α
5
线性表示,所以r(A)=3,齐次线性万程组AX=0的基础解系含有两个线性无关的解向量. 由α
2
=3α
1
-α
3
-α
5
,α
4
=2α
1
+α
3
+6α
5
得方程组AX=0的两个解为 ξ
1
=(3,1,-1,0,-1)
T
,ξ
2
=(2,0,1,-1,6)
T
, 故AX=0的通解为k
1
(3,-1,-1,0,-1)
T
+k
2
(2,0,1,-1,6)
T
(k
1
,k
2
为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/xBA4777K
0
考研数学二
相关试题推荐
已知齐次方程组有非零解,则a=______。
设A为n阶矩阵,AT是A的转置矩阵,对于线性方程组(I)Ax=0和(Ⅱ)ATAx=0,必有()
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求
设函数f(u,v)具有二阶连续偏导数z=f(x,xy),则=______。
设有二重特征根,则a=______。
曲线xy=1在点D(1,1)处的曲率圆方程是______。
设f(u)在区间[-1,1]上连续,且∫-11f(u)du=A.求二重积分I=f(x﹢y)dxdg的值.
设α是常数,考虑积分(I)证明上述积分总是收敛的;(Ⅱ)求上述积分的值.
已知y1*(x)=xe—x+e—2x,y2*(x)=xe—x+xe—2x,y3*(x)=xe—x+e—2x+xe—2x是某二阶线性常系数微分方程y″+py′+qy=f(x)的三个特解.设y=y(x)是该方程满足y(0)=0,y′(0)=0的特解,求
令[*]=t,则原式=∫arctan(1+t)d(t2)=t2arctan91+t)-∫t2/[1+(1+t)2]dt=t2arctan(1+t)-∫[1-((2t+2)/(t2+2t+2))]dt=t2arctan(1+t)-t+ln(t2+2t+2)+
随机试题
抗心律失常药的分类有
关于批发企业的库房管理,正确的是
以下片段选自某节英语课教学实录。T:...Youallhavefinishedthewritingabouthowtoprotectourenvironment,right?Ok,now,it’stimeto
下列作品中,不属于著名戏剧家曹禺的作品的是()。
某战士在抗击强台风“梅花”时,受伤失血过多需要输血。如果该战士是O型血,则应给他输入()。
(2017国考)2015年我国钟表全行业实现工业总产值约675亿元,同比增长3.2%,增速比上年同期提高1.7个百分点。全行业全年生产手表10.7亿只,同比增长3.9%,完成产值约417亿元,同比增长4.3%,增速提高1.9个百分点;生产时钟(含钟芯)5
Thecompanyismostworriedabouthow______.Thecompany’sstaffanswerthephone______.
这些老人养成了每天早上锻炼的习惯。
(Practical)problemslimitthe(ability)ofastronomerstodeterminethemassofasteroids,(who)aresmallplanetarybodied(orb
A、Informationsecuritycanbeguaranteed.B、Privacycanbeprotected.C、Costcanbereduced.D、Timecanbesaved.D
最新回复
(
0
)