首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。 证明: 存在η∈(0,2),使f(η)=f(0);
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。 证明: 存在η∈(0,2),使f(η)=f(0);
admin
2018-12-19
89
问题
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫
0
2
f(x)dx=f(2)+f(3)。
证明:
存在η∈(0,2),使f(η)=f(0);
选项
答案
令F(x)=∫
0
x
f(t)dt,x∈[0,2]。由于f(x)在[0,2]上连续,所以可知F(x)在[0,2]上可导,由拉格朗日中值定理可知,存在η∈(0,2),使得[*],即 2f(η)=∫
0
2
f(x)dx, 所以f(η)=f(0)。
解析
转载请注明原文地址:https://kaotiyun.com/show/eNj4777K
0
考研数学二
相关试题推荐
(2012年)设区域D由曲线y=sinχ=±,y=1围成,则(χy5-1)dχdy=【】
(2014年)已知函数f(χ,y)满足=2(y+1),且f(y,y)=(y+1)2-(2-y)lny,求曲线f(χ,y)=0所围图形绕直线y=-1旋转所成旋转体的体积.
(2008年)(Ⅰ)证明积分中值定理:若函数f(χ)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫abf(χ)dχ=f(η)(b-a);(Ⅱ)若函数φ(χ)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫φ(χ)dχ,则至少存
(2014年)设A=,E为3阶单位矩阵.(Ⅰ)求方程组Aχ=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
(2014年)设二次型f(χ1,χ2,χ3)=χ12-χ22+2aχ1χ3+4χ2χ3的负惯性指数为1,则a的取值范围是_______.
(2012年)证明:χln(-1<χ<1).
(2001年)一个半球体状的雪堆,其体积融化的速率与半球面面积S成正比,比例常数K>0.假设在融化过程中雪堆始终保持半球体状,已知半径为r0的雪堆在开始融化的3小时内,融化了其体积的,问雪堆全部融化需要多少小时?
(1997年)已知y1=χeχ+e2χ,y2=χeχ+e-χ,y3=χeχ+e2χ-e-χ是某二阶线性非齐次微分方程的三个解,求此微分方程.
求微分方程xy’+(1-x)y=e2x(x>0)的满足的特解.
实对阵矩阵A与矩阵合同,则二次型xTAx的规范形为__________。
随机试题
某患者因与人争吵后服用敌敌畏,引起有机磷中毒,被给予大量阿托品治疗,此药对有机磷中毒症状无治疗作用的是()。
男,23岁。5周前因腹痛、腹泻脓血便,伴里急后重感,在当地医院诊断为“急性细菌性痢疾”,经口服环丙沙星治疗4天好转。1天前吃西瓜后再次出现腹痛、腹泻,大便每日达10余次,轻度里急后重。粪便镜检每高倍镜视野脓细胞20~40个,红细胞20~30个。考虑诊断为
血热证的辨证要点不包括
下列属于直流传动系统在扰动信号作用下的动态指标的是()。
公共选择理论分析的是政治场景中的个体行动及其后果,它是一种关于( )的经济理论。
就心理咨询师而言,对咨询关系的建立和发展具有重要影响的是()。
传统都有其“原本”,原本是传统的始发言行。传统的始发言行有其特定的原初行动者、受动者和叫作参照系的现实环境。随着时间的推移和历史的进展,原本逐步地被认为是具有权威性的、天经地义的、带有信仰性质的东西而为群体所接受,成为凝聚群体的力量,这样,原本也就逐步地形
与十进制数200等值的十六进制数为();
有三个关系R、S和T如下,则由关系R和S得到关系T的操作是()。
TimemanagementUntilrecently,booksonhowtomanageyourtimeatworkwereseenasabitofajokeinthebusinessworld.
最新回复
(
0
)