首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y=f(x)由方程cos(xy)+ln y-z=1所确定,则n[f(2/n)-1]=( ).
设函数y=f(x)由方程cos(xy)+ln y-z=1所确定,则n[f(2/n)-1]=( ).
admin
2022-09-22
70
问题
设函数y=f(x)由方程cos(xy)+ln y-z=1所确定,则
n[f(2/n)-1]=( ).
选项
A、2
B、1
C、-1
D、-2
答案
A
解析
当x=0时,y=1.
将方程cos(xy)+ln y-x=1两边同时对x求导,得
-sin(xy)(y+xy’)+
·y’-1=0.
将x=0,t=1代入,得y’(0)=f’(0)=1.
因此
n[f(2/n)-1]=2.
转载请注明原文地址:https://kaotiyun.com/show/xDf4777K
0
考研数学二
相关试题推荐
设A为三阶正交阵,且|A|<0,|B-A|=-4,则|E-ABT|=_____
曲线y=x2与直线y=x+2所围成的平面图形的面积为________.
设矩阵A与相似,则r(A)+r(A一2E)=__________.
=_______.
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组AX=b的通解是________。
设y=y(x)是由=________。
设A=(α1,α2,α3)为三阶矩阵,且|A|=3,则|α1+2α2,α2-3α3,α3+2α1|=_______.
设f(x)有任意阶导数且f’(x)=f3(x),则f(n)(x)=_______.
设f(u,v)具有连续偏导数,且f’u(u,v)+f’v(u,v)=sin(u+v)eu+v,求y(x)=e—2xf(x,x)所满足的一阶微分方程,并求其通解。
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。证明对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)。
随机试题
具有跨文化意识的人,能够敏锐地感觉到并客观地观察、评估和理解不同文化的差异,他们有着较强的()
患者,男,38岁。近半年来右上后牙牙龈反复肿痛。1年前该牙曾因自发痛。夜间痛于外院开髓。检查:右上第二前磨牙牙合面开髓孔,根管内空虚,根尖部扪不适,叩痛(+)。电活力测无反应。颊侧中央有窄牙周袋,深达根尖,袋内溢脓。X线示根尖周膜影像模糊脓液引流的途径
“十一五”规划提出,我国增强自主创新能力要大力提高()。
影响施工质量的因素主要有( )。
单位和个人检举违反《会计法》和国家统一的会计制度的行为,也属于会计工作社会监督。()
无论健康人群还是患者,除了积极的心理__________外,还要学会向别人诉苦,释放自己的心理压力。同时,要笑对人生,幽默和笑能__________大脑产生对人体有益的物质。笑是一种独特的运动方式,可以增强机体的活力和对疾病的抵抗能力,使内分泌发生微妙变化
社会政策在经济、政治和社会等领域中都有重要功能,下列属于社会政策政治功能的是()。
任何一项伟大的事业,都不会一帆风顺。在历史的进程中,突破与阻力、______与守旧,永远是一对相生相克的孪生姐妹。古代被称为贤君的,用今天的话讲,都是能______社会矛盾的成功者。依次填入划横线部分最恰当的一项是()
この店のきものは高価なものばかりです。
Accordingtotheauthor,whatmaybethepossiblecarriersofbirdflu?Onwhatconditioncanthebirdsspreadtheinfluenzathr
最新回复
(
0
)