首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。证明对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)。
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。证明对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)。
admin
2020-03-16
52
问题
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。证明对任何a∈[0,1],有∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1)。
选项
答案
设有 F(x)=∫
0
x
g(t)f’(t)dt+∫
0
1
f(t)g’(t)dt一f(x)g(1), 则F(x)在[0,1]上的导数连续,并且 F’(x)=g(x)f’(x)—f’(x)g(1)=f’(x)[g(x)一g(1)], 由于x∈[0,1]时,f’(x)≥0,g’(x)≥0,因此F’(x)≤0,即F(x)在[0,1]上单调递减。 注意到 F(1)=∫
0
1
g(t)f’(t)dt+∫
0
1
f(t)g’(t)dt一g(1)g(1), 而又因为 ∫
0
1
g(t)f’(t)dt=∫
0
1
g(t)df(t)=g(t)f(t)|∫
0
1
一∫
0
1
f(t)g’(t)dt=f(1)g(1)一∫
0
1
f(t)g’(t)dt, 故F(1)=0。 因此x∈[0,1]时,F(x)≥F(1)=0,由此可得对任何a∈[0,1],有 ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1)。
解析
转载请注明原文地址:https://kaotiyun.com/show/vz84777K
0
考研数学二
相关试题推荐
(1998年试题,五)利用代换y’’cosx一2y’sinx+3ycosx=ex化简,并求出原方程的通解
A、a>1时,级数收敛B、a<l时,级数发散C、a=1时,级数收敛D、a=1时,级数发散D
设A是n阶矩阵,A=E+xyT,x与y都是n×1矩阵,且yTx=2,求A的特征值、特征向量.
设有微分方程y’-2y=φ(x),其中φ(x)=在(-∞,+∞)求连续函数y(x),使其在(-∞,1)及(1,+∞)内都满足所给的方程,且满足条件y(0)=0.
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调递减,f(0)=0.试证明:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
计算积分
设矩阵A=可逆,向量α=是矩阵A*的一个特征向量,λ是α对应的特征值,其中A*是A的伴随矩阵.试求a、b和λ的值.
设有一半径为R长度为l的圆柱体,平放在深度为2R的水池中(圆柱体的侧面与水面相切).设圆柱体的比重为ρ(ρ>1),现将圆柱体从水中移出水面,问需做多少功?
设f(x)连续可导,f(0)=0,f’(0)≠0,F(x)=(x2-t2)f(t)dt,且当x→0时,F’(x)与xk为同阶无穷小,求k.
[2014年]行列式==().
随机试题
公司财务分析与评价采用的方法主要是________。
女性,72岁,行走时不慎滑倒,即感右髋部疼痛,2小时后来院,查体右髋部有皮下淤血、局部压痛,右下肢较左下肢短缩3cm,右下肢外旋80°畸形。最可能的诊断是
A、CMB、IDLC、LDLD、HDLE、Lp(a)富含三酰甘油的脂蛋白
固定桥粘固后短时间内出现咬合痛’,最可能的原因是()
下列关于死刑复核程序与第二审程序的说法正确的有:()
在刑事案件办理过程中,据以定案的物证应当是原物。只有在下列哪些情形下,才可以拍摄或者制作足以反映原物外形或者内容的照片、录像或者复制品?()
财政机制通过()手段贯彻收入政策。
下列关于信托受托人权利和义务的表述,正确的有()。
针对不同方式发出询证函时的控制措施,下列说法中,错误的是()。
根据对第二段的内容分析,下列判断全对的一项是( )。①文明植根于文化,是随着文化的发展而产生的②没有文明就没有文化③文化创造了人④文明创造了人⑤有了文化的积累和进步,人类才能一步步脱离野蛮状态而成为文明的人文中
最新回复
(
0
)