首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。证明对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)。
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。证明对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)。
admin
2020-03-16
97
问题
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。证明对任何a∈[0,1],有∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1)。
选项
答案
设有 F(x)=∫
0
x
g(t)f’(t)dt+∫
0
1
f(t)g’(t)dt一f(x)g(1), 则F(x)在[0,1]上的导数连续,并且 F’(x)=g(x)f’(x)—f’(x)g(1)=f’(x)[g(x)一g(1)], 由于x∈[0,1]时,f’(x)≥0,g’(x)≥0,因此F’(x)≤0,即F(x)在[0,1]上单调递减。 注意到 F(1)=∫
0
1
g(t)f’(t)dt+∫
0
1
f(t)g’(t)dt一g(1)g(1), 而又因为 ∫
0
1
g(t)f’(t)dt=∫
0
1
g(t)df(t)=g(t)f(t)|∫
0
1
一∫
0
1
f(t)g’(t)dt=f(1)g(1)一∫
0
1
f(t)g’(t)dt, 故F(1)=0。 因此x∈[0,1]时,F(x)≥F(1)=0,由此可得对任何a∈[0,1],有 ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1)。
解析
转载请注明原文地址:https://kaotiyun.com/show/vz84777K
0
考研数学二
相关试题推荐
从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度y(从海平面算起)与下沉速度ν之间的函数关系.设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为m,体积为B,海水比重为ρ,仪器所受的阻力与下沉速
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。计算PTDP,其中
设f(x)在x=0处连续可导,且求f"(0).
设f(χ)连续,f(0)=1,令F(f)=f(χ2+y2)dχdy(t≥0),求F〞(0).
设当实数a为何值时,方程组Ax=b有无穷多解,并求其通解。
设F(χ)=,试求:(Ⅰ)F(χ)的极值;(Ⅱ)曲线y=F(χ)的拐点的横坐标;(Ⅲ)∫-23χ2F′(χ)dχ.
设(2E—C—1B)AT=C—1,其中E是4阶单位矩阵,AT是4阶矩阵A的转置矩阵,且求矩阵A。
当a,b取何值时,方程组无解、有唯一解、有无数个解?在有无数个解时求其通解.
给定向量组(1)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,+2)T和(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+b)T,β3=(2,1,a+4)T.当口为何值时(Ⅰ)和(Ⅱ)等价?a为何值时(Ⅰ)和(Ⅱ)不等价?
设y=f(x)为区间[0,1]上的非负连续函数.证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
随机试题
对极破碎地层、坍方体、岩堆等地段,隧道一般采用()支护方式。
政府办事公开,主要包括()
A、Porridge.B、Purifiedwater.C、Pizza.D、Applejuice.C女士建议男士drinkalotofwaterandfruitjuice,一天不要吃饭,稍微吃一些柔软的食物,例如porridgec
下列不属于内分泌腺的腺体是
护士在工作中患血源性传染病的最常见原因是()
中新社北京2月25日电构建和谐社会渐成中共中央执政理念中新社记者吴庆才自去年秋季中共十六届全会以来,“和谐社会”一词频见报端并日渐升温。春节刚过,大约二百名中国党政军高官便云集北京,参加以构建和谐社会为主题的中央党校研讨会。人民预料,和谐社会是今年
目前,世界各国普遍采用的记账方法是()。
下列关于在主板上市公司首次公开发行的股票条件中,正确的有()。Ⅰ.有限责任公司按原账面净资产值折股整体变更为股份有限公司的,持续经营时间可以从有限责任公司成立之日起计算Ⅱ.发行人自股份公司成立之后,持续时间应当在3年以上,但经国务院批准的除外
政府调动社会资源的方有多种,其中不属于政政府专项收费的是()。
FemaleRelationshipsA)Severalnewbooksandfilmsexplorethecomplexrelationshipsbetweenwomen.LucyScholesexplainswhyan
最新回复
(
0
)