首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设上xOy平面上有正方形D={(x,y) | 0≤x≤1,0≤y≤1}及直线l:x+y=t(t≥0),若S(t)表示正方形D位于直线l左下方部分的面积,试求
设上xOy平面上有正方形D={(x,y) | 0≤x≤1,0≤y≤1}及直线l:x+y=t(t≥0),若S(t)表示正方形D位于直线l左下方部分的面积,试求
admin
2019-08-26
69
问题
设上xOy平面上有正方形D={(x,y) | 0≤x≤1,0≤y≤1}及直线l:x+y=t(t≥0),若S(t)表示正方形D位于直线l左下方部分的面积,试求
选项
答案
[*] [*]
解析
【思路探索】先求平面图形的面积(画出积分面积的图形,如图l-2所示),再求定积分.
【错例分析】本题中应根据t的不同取值情况,求出S(t)的表达式.如果忽略这一点,就会出错.
转载请注明原文地址:https://kaotiyun.com/show/xSJ4777K
0
考研数学三
相关试题推荐
设函数f(x)在[a,b]上连续,在(a,b)内具有二阶连续导数.求证:存在ξ∈(a,b),使得f(b)一2ff"(ξ)(b一a)2.
已知α1=(a,a,a)T,α2=(一a,a,b)T,α3=(一a,一a,一b)T线性相关,则a,b满足关系式_________.
假设从单位正方形区域D={(x,y)|0≤x≤1,0≤y≤1}中随机地选取一点,以该点的两个坐标x与y作为直角三角形的两条直角边,求该直角三角形的面积大于的概率p.
求下列极限:
设二维随机变量(X1,Y1)与(X2,Y2)的联合概率密度分别为求:Xi,Yi(i=1,2)的边缘概率密度;
(1992年)设曲线y=e-x(x≥0)(1)把曲线y=e-x,x轴,y轴和直线x=ξ(ξ>0)所围成平面图形绕z轴旋转一周,得一旋转体,求此旋转体体积V(ξ);求满足的a.(2)在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求
(2008年)如图,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积分∫0axf’(x)dx等于()
设f(x)在(一∞,+∞)上二阶导数连续,f(0)=01)确定a使g(x)在(一∞,+∞)上连续;2)证明对以上确定的a,g(x)在(一∞,+∞)上有连续一阶导数.
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT.求:矩阵A的特征值和特征向量.
已知矩阵B=相似于对角矩阵.用正交变换化二次型f(X)=XTBX为标准形,其中X=(x1,x2,x3)T为3维向量.
随机试题
PASSAGEFOUR(1)Itishardformodernpeopletoimaginethelifeonehundredyearsago.Notelevision,noplastic,noATMs
(2003年第30题)有些基因在一个生物个体的几乎所有细胞中持续表达,这类基因称为
A.囊肿衬里上皮为一薄层复层鳞状上皮,无上皮钉突。基底细胞层界限清楚,棘层较薄B.瘤细胞呈交错排列的纤维结缔组织,内散在牙源性上皮团C.肿瘤组织内可见到淀粉样物质钙化,呈同心圆样沉积D.肿瘤内牙釉质、牙本质、牙骨质和牙髓排列如同正常牙E.巨细胞多分
两性霉素B抗真菌药物的作用机制是()。
可作为抵押物进行抵押的财产是( )。
在()情况下,适宜采用自下而上法创建工作分解结构。
《良宵》《光明行》是音乐家刘天华创作的()独奏曲。
佛罗里达的一些社区几乎全部是退休老人居住,如果有,也只有很少的带小孩的家庭居住。然而这些社区聚集了很多欣欣向荣的专门出租供婴儿和小孩使用的家具的企业。以下哪项,如果正确,能最好地调和以上描述的表面矛盾?
A=WashingtonD.C.B=NewYorkCityC=ChicagoD=LosAngeles1.WashingtonD.C.Washington,thecapitaloftheUnited
HIVandItsTransmissionResearchhasrevealedagreatdealofvaluablemedical,scientific,andpublichealthinformationa
最新回复
(
0
)