首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η*是非齐次方程组AX=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组AX=0的基础解系.令η0=η*,η1=ξ1+η*,η2=ξ2+η*,…,ηn-r=ξn-r+η*.证明:非齐次方程的任一解η都可表示成η=μ0η0+μ1η1+μ2η2+…+μ
设η*是非齐次方程组AX=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组AX=0的基础解系.令η0=η*,η1=ξ1+η*,η2=ξ2+η*,…,ηn-r=ξn-r+η*.证明:非齐次方程的任一解η都可表示成η=μ0η0+μ1η1+μ2η2+…+μ
admin
2017-06-14
51
问题
设η
*
是非齐次方程组AX=b的一个特解,ξ
1
,ξ
2
,…,ξ
n-r
是对应齐次方程组AX=0的基础解系.令η
0
=η
*
,η
1
=ξ
1
+η
*
,η
2
=ξ
2
+η
*
,…,η
n-r
=ξ
n-r
+η
*
.证明:非齐次方程的任一解η都可表示成η=μ
0
η
0
+μ
1
η
1
+μ
2
η
2
+…+μ
n-r
η
n-r
,其中μ
0
+μ
1
+μ
2
+…+μ
n-r
=1.
选项
答案
AX=b的任一解η可表示成 η=η
*
+k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=η
*
(1-k
1
-k
2
-…-k
n-r
)+k
1
(ξ
1
+η
*
)+k
2
(ξ
2
+η
*
)+…+k
n-r
(ξ
n-r
+η
*
). 记 η=μ
0
η
0
+μ
1
η
1
+μ
2
η
2
+…+μ
n-r
η
n-r
, 其中μ
0
+μ
1
+…+μ
n-r
=1-k
1
-k
2
-…-k
n-r
+k
1
+k
2
+…+k
n-r
=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/xZu4777K
0
考研数学一
相关试题推荐
求微分方程(3x2+2xy-y2)dx+(x2-2xy)dy=0的通解.
设随机变量X服从正态分布N(μ,σ2)(σ>0),且二次方程y2+4y+X=0无实根的概率为1/2,则μ=___________.
已知3阶矩阵A的第一行是(a,6,c),a,b,c不全为零,矩阵(k为常数),且AB=0,求线性方程组Ax=0的通解.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设数列{an}满足条件:a0=3,a1=1,an-2-n(n-1)an=0(n≥2),S(x)是幂级数的和函数。证明:S"(X)-S(X)=0;
设a1,a2,…,at为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+a1,β+a2,…,β+at线性无关.
求一个正交变换,化二次型f=x12+4x22+4x32-4x1x2-82x3为标准形.
k为何值时,线性方程组有唯一解、无解、有无穷多组解?在有解的情况下,求出其全部解.
(2007年试题,24)设总体X的概率密度为X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值.判断是否为θ2的无偏估计量,并说明理由.
随机试题
公债是由政府发行的一种长期债券,所筹资金主要用于弥补财政赤字和其他非生产性开支。
急性梗阻性化脓性胆管炎的病理生理改变为
下列哪项不符合SLE的血液系统改变
采用()适用于由于不能确定工作范围或规模等原因无法准确定价的工程。
关于反补贴措施和反倾销措施的异同,下列说法不正确的是()。
某名人收到香港某组织的请教问题的信。这位名人一时难以确切答复。过了几天,他弄清了问题原委,即写复信。你认为作为复信的开头,哪一项最好?()
法律对社会关系的调整是通过强制和惩罚来实现的。()
设矩阵,问当a为何值时,矩阵方程AX=B无解、有解?并在有解时,求该矩阵方程的所有解.
要将一个弹出式菜单作为某个控件的快捷菜单,需要在该控件的某事件代码中调用弹出式菜单程序的命令。这个事件是
如果子类中覆盖了父类中的同名方法,则在子类中调用父类中的同名方法时用关键字【】;在一个类的内部可以直接调用本类的对象,也可通过关键字this来调用。
最新回复
(
0
)