首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η*是非齐次方程组AX=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组AX=0的基础解系.令η0=η*,η1=ξ1+η*,η2=ξ2+η*,…,ηn-r=ξn-r+η*.证明:非齐次方程的任一解η都可表示成η=μ0η0+μ1η1+μ2η2+…+μ
设η*是非齐次方程组AX=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组AX=0的基础解系.令η0=η*,η1=ξ1+η*,η2=ξ2+η*,…,ηn-r=ξn-r+η*.证明:非齐次方程的任一解η都可表示成η=μ0η0+μ1η1+μ2η2+…+μ
admin
2017-06-14
61
问题
设η
*
是非齐次方程组AX=b的一个特解,ξ
1
,ξ
2
,…,ξ
n-r
是对应齐次方程组AX=0的基础解系.令η
0
=η
*
,η
1
=ξ
1
+η
*
,η
2
=ξ
2
+η
*
,…,η
n-r
=ξ
n-r
+η
*
.证明:非齐次方程的任一解η都可表示成η=μ
0
η
0
+μ
1
η
1
+μ
2
η
2
+…+μ
n-r
η
n-r
,其中μ
0
+μ
1
+μ
2
+…+μ
n-r
=1.
选项
答案
AX=b的任一解η可表示成 η=η
*
+k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=η
*
(1-k
1
-k
2
-…-k
n-r
)+k
1
(ξ
1
+η
*
)+k
2
(ξ
2
+η
*
)+…+k
n-r
(ξ
n-r
+η
*
). 记 η=μ
0
η
0
+μ
1
η
1
+μ
2
η
2
+…+μ
n-r
η
n-r
, 其中μ
0
+μ
1
+…+μ
n-r
=1-k
1
-k
2
-…-k
n-r
+k
1
+k
2
+…+k
n-r
=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/xZu4777K
0
考研数学一
相关试题推荐
12a
求微分方程(3x2+2xy-y2)dx+(x2-2xy)dy=0的通解.
将长度为1m的木棒随机地截成两段,则两段长度的相关系数为___________.
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B):②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A)=秩(B);④若秩(
设A,B为满足AB=0的任意两个非零矩阵,则必有
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)nxm中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2…,xn)=(I)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)
(2010年试题,21)设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准型为y12+y22,且Q的第三列为证明A+E为正定矩阵.
yOz平面上的曲线,绕z轴旋转一周与平面z=1,z=4围成一旋转体Ω,设该物体的点密度μ=r2,其中r为该点至旋转轴的距离,求该物体的质心的坐标.
随机试题
Iagreewithhim______,butnotentirely.
下列与法人有关的表述错误的有:()
可行性研究阶段的建设方案设计对投资估算误差有何深度要求?
简单型长期持有战略具有交易成本和管理费用最小化的优势,但同时也放弃了从市场环境变化中获利的可能。()
行政许可+行政诉讼甲省乙市开源公司(注册地位于乙市丙区)经乙市工商局核准取得《企业法人营业执照》,从事某类产品生产经营。后来,甲省商务局函告开源公司:按照甲省地方性法规最新规定,新建此类:企业必须到省商务局办理某种生产经营许可证后,方可向当地工商局申请企业
下列不属于我国法律渊源的是()。
在竞争学习的情境中,个人达成目标的努力会妨碍他人达成目标;在合作学习的情境中,个人达成目标的努力可以帮助他人达成目标。因此,合作学习中不存在竞争。()
学生阅读时,划重点策略是利用了知觉的()。
2009年10月14日晚上7时许,浦东新区闸航路、召泰路路口附近,一名年约20岁的年轻人站在路中央拦车。此时,上海庞源建筑机械工程有限公司的司机孙中界正驾驶一辆金杯面包车路过。看到这名年轻人无公交车、出租车可搭乘后,他顺道开车将其送到了1.5公里外的目的地
Ourexperimentwasconductedunderoptimalconditions.Theunderlinedpartmeans______
最新回复
(
0
)