(Ⅰ)设f(xy,)=y2(x2一1)(xy≠0),则df|(1,1)=_________; (Ⅱ)设二元函数z=xex+y+(x+1)In(1+y),则dz|(1,0)=_________.

admin2020-03-18  39

问题 (Ⅰ)设f(xy,)=y2(x2一1)(xy≠0),则df|(1,1)=_________;
    (Ⅱ)设二元函数z=xex+y+(x+1)In(1+y),则dz|(1,0)=_________.

选项

答案(Ⅰ)dx—dy; (Ⅱ)2edx+(e+2)dy

解析 (Ⅰ)求解本题的关键是确定函数f(x,y)的解析式.令u=xy,v=一1=u2一uv,即f(x,y)=x2一xy,求一阶全微分可得
    df(x,y)=(2x—y)dx—xdy.
    在上式中令x=1,y=1即得
    df|(1,1)=dx—dy.
    (Ⅱ)利用全微分的四则运算法则与一阶全微分形式不变性直接计算即得
    dz=ex+ydx+xd(ex+y)+ln(1+y)d(x+1)+(x+1)d[ln(1+y)]
    =ex+ydx+xex+yd(x+y)+ln(1+y)dx+(x+1)
    =ex+ydx+xex+y(dx+dy)+ln(1+y)dx+
于是dz|(1,0)=edx+e(dx+dy)+2dy=2edx+(e+2)dy.
转载请注明原文地址:https://kaotiyun.com/show/xaD4777K
0

最新回复(0)