首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αk(k<n)是Rn中k个线性无关的列向量.证明:存在n阶满秩方阵P,使得P以α1,α2,…,αk为其前k列.
设α1,α2,…,αk(k<n)是Rn中k个线性无关的列向量.证明:存在n阶满秩方阵P,使得P以α1,α2,…,αk为其前k列.
admin
2017-06-26
34
问题
设α
1
,α
2
,…,α
k
(k<n)是R
n
中k个线性无关的列向量.证明:存在n阶满秩方阵P,使得P以α
1
,α
2
,…,α
k
为其前k列.
选项
答案
取齐次线性方程组[*]=0的基础解系ξ
1
,…,ξ
n-k
,则可证明α
1
,α
k
,ξ
1
…,ξ
n-k
线性无关: 设λ
1
α
1
+…+λ
k
α
k
+μ
1
ξ
1
+…+μ
n-k
ξ
n-k
=0,两端左乘(λ
1
α
1
+…+λ
k
α
k
)
T
,并利用α
i
T
ξ
j
=0(i=1,…,k;j=1,…,n-k),得(λ
1
α
1
+…+λ
k
α
k
)
T
(λ
1
α
1
+…+λ
k
α
k
)=0,即 ‖λ
1
α
1
+…+λ
k
α
k
‖
2
=0,[*]λ
1
α
1
+…+λ
k
α
k
=0,而α
1
,…,α
k
线性无关,[*]λ
1
=…=λ
k
=0,[*]μ
1
ξ
1
+…+μ
n-k
ξ
n-k
=0,又ξ
1
,…,ξ
n-k
线性无关,则μ
1
=…=μ
n-k
=0,于是证得 α
1
,…,α
k
,ξ
1
,…,ξ
n-k
线性无关,令矩阵P=[α
1
,…α
k
ξ
1
…ξ
n-k
],则P为满秩方阵,且以α
1
,…,α
k
为其前k列.
解析
转载请注明原文地址:https://kaotiyun.com/show/xjH4777K
0
考研数学三
相关试题推荐
已知齐次线性方程组其中,试讨论a1,a2…an和b满足何种关系时:(Ⅰ)方程组仅有零解;(Ⅱ)方程组有非零解,在有非零解时,求此方程组的一个基础解系.
设n维向量a=(a,0,…,0,a)T,a>0,E为n阶单位矩阵,矩阵A=E-aaT,B=,其中A的逆矩阵为B,则a=_________.
设n阶矩阵A与B等价,则必有().
设3阶对称矩阵A的特征向量值λ1=1,λ2=2,λ3=-2,又a1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证a1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.
设三阶实对称矩阵A的各行元素之和均为3,向量a1=(-1,2,-1)T=(0,-1,1)T是线性方程组Ax=0的两个解;(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=L;(Ⅲ)求A及(A-(3/2)E)6,其中E为三阶
设线性方程组(Ⅰ)证明:若a1,a2,a3,a4两两不相等,则此线性方程组无解;(Ⅱ)设a1=a3=k,a2=a4=-k(k≠0),且已知β1,β2是该方程组的两个解,其中β1=,写出此方程组的通解.
设A是n阶矩阵,下列不是命题“0是矩阵A的特征值”的充分必要条件的是().
两台同样自动记录仪,每台无故障工作的时间服从参数为5的指数分布;首先开动其中一台,当其发生故障时,停用而另一台自动开动.试求两台记录仪无故障工作的总时间T的概率密度f(t)、数学期望和方差.
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(Ⅰ)AX=0和(Ⅱ)ATAX=0必有().
随机试题
Whattypeofmusicisfeaturedonthisshow?
下列属于软件著作财产权的是()
库存的商品可分为____________和____________。
下列关于医务人员对患者的义务,错误的是
A.曲妥珠单抗B.氟他胺C.阿那曲唑D.他莫昔芬E.顺铂只对癌细胞起作用而对正常体细胞几乎没有伤害的是
某小区召开业主大会,大会召集和表决都符合法律规定。大会通过决议,决定由业主委员会在银行开设账户、管理维修资金,小区每户向业主委员会交纳人民币500元张某是小区业主之一,但未参与业主大会表决。请问,下列说法正确的是?()。
下列设备中,具有USB接口的有()。
根据中财网2011年12月8日的新闻,截至2011年9月底,新型农村合作医疗(以下简称新农合)、城镇居民基本医疗保险(以下简称城镇居民医保)、城镇职工基本医疗保险(以下简称职工医保)三项基本医疗保险制度(以下简称“三保”)覆盖了95%以上的城乡居民,参保人
()是手动托盘搬运车的特点。
公安工作的集中性即统一性,要求在服从国家意志,实行宏观决策,领导与指导等方面高度集中。在()上高度统一。
最新回复
(
0
)