首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αk(k<n)是Rn中k个线性无关的列向量.证明:存在n阶满秩方阵P,使得P以α1,α2,…,αk为其前k列.
设α1,α2,…,αk(k<n)是Rn中k个线性无关的列向量.证明:存在n阶满秩方阵P,使得P以α1,α2,…,αk为其前k列.
admin
2017-06-26
35
问题
设α
1
,α
2
,…,α
k
(k<n)是R
n
中k个线性无关的列向量.证明:存在n阶满秩方阵P,使得P以α
1
,α
2
,…,α
k
为其前k列.
选项
答案
取齐次线性方程组[*]=0的基础解系ξ
1
,…,ξ
n-k
,则可证明α
1
,α
k
,ξ
1
…,ξ
n-k
线性无关: 设λ
1
α
1
+…+λ
k
α
k
+μ
1
ξ
1
+…+μ
n-k
ξ
n-k
=0,两端左乘(λ
1
α
1
+…+λ
k
α
k
)
T
,并利用α
i
T
ξ
j
=0(i=1,…,k;j=1,…,n-k),得(λ
1
α
1
+…+λ
k
α
k
)
T
(λ
1
α
1
+…+λ
k
α
k
)=0,即 ‖λ
1
α
1
+…+λ
k
α
k
‖
2
=0,[*]λ
1
α
1
+…+λ
k
α
k
=0,而α
1
,…,α
k
线性无关,[*]λ
1
=…=λ
k
=0,[*]μ
1
ξ
1
+…+μ
n-k
ξ
n-k
=0,又ξ
1
,…,ξ
n-k
线性无关,则μ
1
=…=μ
n-k
=0,于是证得 α
1
,…,α
k
,ξ
1
,…,ξ
n-k
线性无关,令矩阵P=[α
1
,…α
k
ξ
1
…ξ
n-k
],则P为满秩方阵,且以α
1
,…,α
k
为其前k列.
解析
转载请注明原文地址:https://kaotiyun.com/show/xjH4777K
0
考研数学三
相关试题推荐
已知齐次线性方程组其中,试讨论a1,a2…an和b满足何种关系时:(Ⅰ)方程组仅有零解;(Ⅱ)方程组有非零解,在有非零解时,求此方程组的一个基础解系.
设n阶矩阵A与B等价,则必有().
设3阶对称矩阵A的特征向量值λ1=1,λ2=2,λ3=-2,又a1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证a1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.
设X1,X2,…,Xn是来自正态总体X的简单随机样本,Y1=1/6(X1+…+X6),Y2=1/3(X7+X8+X9),S2=(X1-Y2)2,Z=,证明统计量Z服从自由度为2的t分布.
已知3阶矩阵B为非零向量,且B的每一个列向量都是方程组(Ⅰ)求λ的值;(Ⅱ)证明|B|=0.
设A为三阶矩阵,A的特征值为λ1=1,λ22,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×m中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2,…,xn)=(Ⅰ)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(Ⅰ)AX=0和(Ⅱ)ATAX=0必有().
设A为m×n矩阵,齐次线性方程组Ax=0仅有零解的充分条件是().
随机试题
(2012年)下列金融机构中,由中国银行业监管委员会负责监管的有()。
=________.
破伤风最初的表现是
血分证的病机特点是
辞职和自动离职都是自愿辞去现有工作。()
有一根三跨的钢筋混凝土等截面连续梁,q=p+g=25kN/m(设计值)如下图所示。混凝土强度等级为C30,梁纵向受力钢筋采用HRB335钢,纵向受力钢筋合力点至截面近边的距离aS=35mm,梁截面b×h=200mm×500mm。
下列选项中不属于应收账款范畴的有()。
境外机构投资者通过资格审批和外汇资金的监管程序后,将境外资本兑换为人民币资金,投资于境内的股权投资基金市场,这是()制度。
党的纪律处分有()。
没有选课表,表中包含字段有:学号N(6),课程号C(6),成绩N(4)。要查询每门课程的学生人数,要求显示课程号和学生人数,则对应的SQL语句为:SEI。ECT课程号,COUNT学号AS学生人数FROM选课表GROUPBY______
最新回复
(
0
)