首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αk(k<n)是Rn中k个线性无关的列向量.证明:存在n阶满秩方阵P,使得P以α1,α2,…,αk为其前k列.
设α1,α2,…,αk(k<n)是Rn中k个线性无关的列向量.证明:存在n阶满秩方阵P,使得P以α1,α2,…,αk为其前k列.
admin
2017-06-26
32
问题
设α
1
,α
2
,…,α
k
(k<n)是R
n
中k个线性无关的列向量.证明:存在n阶满秩方阵P,使得P以α
1
,α
2
,…,α
k
为其前k列.
选项
答案
取齐次线性方程组[*]=0的基础解系ξ
1
,…,ξ
n-k
,则可证明α
1
,α
k
,ξ
1
…,ξ
n-k
线性无关: 设λ
1
α
1
+…+λ
k
α
k
+μ
1
ξ
1
+…+μ
n-k
ξ
n-k
=0,两端左乘(λ
1
α
1
+…+λ
k
α
k
)
T
,并利用α
i
T
ξ
j
=0(i=1,…,k;j=1,…,n-k),得(λ
1
α
1
+…+λ
k
α
k
)
T
(λ
1
α
1
+…+λ
k
α
k
)=0,即 ‖λ
1
α
1
+…+λ
k
α
k
‖
2
=0,[*]λ
1
α
1
+…+λ
k
α
k
=0,而α
1
,…,α
k
线性无关,[*]λ
1
=…=λ
k
=0,[*]μ
1
ξ
1
+…+μ
n-k
ξ
n-k
=0,又ξ
1
,…,ξ
n-k
线性无关,则μ
1
=…=μ
n-k
=0,于是证得 α
1
,…,α
k
,ξ
1
,…,ξ
n-k
线性无关,令矩阵P=[α
1
,…α
k
ξ
1
…ξ
n-k
],则P为满秩方阵,且以α
1
,…,α
k
为其前k列.
解析
转载请注明原文地址:https://kaotiyun.com/show/xjH4777K
0
考研数学三
相关试题推荐
已知齐次线性方程组其中,试讨论a1,a2…an和b满足何种关系时:(Ⅰ)方程组仅有零解;(Ⅱ)方程组有非零解,在有非零解时,求此方程组的一个基础解系.
设有三维列向量(Ⅰ)β可由a1,a2,a3,线性表示,且表达式唯一;(Ⅱ)β可由a1,a2,a3线性表示,且表达式不唯一;(Ⅲ)β不能由a1,a2,a3线性表示.
微分方程的通解是_________.
设三阶实对称矩阵A的各行元素之和均为3,向量a1=(-1,2,-1)T=(0,-1,1)T是线性方程组Ax=0的两个解;(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=L;(Ⅲ)求A及(A-(3/2)E)6,其中E为三阶
已知3阶矩阵B为非零向量,且B的每一个列向量都是方程组(Ⅰ)求λ的值;(Ⅱ)证明|B|=0.
设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则().
两台同样自动记录仪,每台无故障工作的时间服从参数为5的指数分布;首先开动其中一台,当其发生故障时,停用而另一台自动开动.试求两台记录仪无故障工作的总时间T的概率密度f(t)、数学期望和方差.
设λ0是n阶矩阵A的特征值,且齐次线性方程组(λ0E-A)X=0的基础解系为η1,η2,则A的属于λ0的全部特征向量为().
随机试题
溃疡性结肠炎发生急性中毒性结肠扩张的诱因中,下列哪项无关
硝酸酯制剂在治疗心绞痛时,主要作用为
某市现有一宗面积为2000m2。的住宅用地,某开发公司拟建造一栋塔式住宅楼,预计开发建设期2年,建成后即可全部售出。根据当地同类住宅市场行情,平均售价可达3800元/m2;开发建设过程中,建筑费、专业费和不可预见费可控制在1500元/m2,第一年投入40%
将如图1所示的四台水泵近似为位于中心位置的等效点声源条件的有()。
在证券公司自营业务内控机制中,建立完备的业绩考核和激励制度,应遵循()原则,对自营业务人员的投资能力、业绩水平等情况进行评价。
存款人对特定资金的管理与使用,可以申请开立专用存款账户。该特定的资金包括()。
(2020年)下列各项关于甲公司发生的交易或事项中,不适用非货币性资产交换准则进行会计处理的有()。
经济学领域所谓的“看不见的手”的最初提出者是()。
试述关节盘的组织及解剖特点。
选举法规定,在直接选举中,正式代表候选人名单及代表候选人的基本情况应当在选举之前公布。下列选项哪个是正确的公布日期?()
最新回复
(
0
)