首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶方阵,k为正整数,线性方程组AkX=0有解向量α,但Ak一1α≠0.证明:向量组α,Aα,…, Ak一1α线性无关.
设A为n阶方阵,k为正整数,线性方程组AkX=0有解向量α,但Ak一1α≠0.证明:向量组α,Aα,…, Ak一1α线性无关.
admin
2017-04-23
40
问题
设A为n阶方阵,k为正整数,线性方程组A
k
X=0有解向量α,但A
k一1
α≠0.证明:向量组α,Aα,…, A
k一1
α线性无关.
选项
答案
设有一组数λ
1
,λ
2
,…,λ
k
,使λ
1
α+λ
2
Aα+…+λ
k
A
k一1
α=0两端左乘A
k一1
.得λ
1
A
k一1
α=0.因A
k一1
α≠0,得λ
1
=0.类似可得λ
2
=…=λ
k
=0.故α,Aα,…,A
k一1
α线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/xkt4777K
0
考研数学二
相关试题推荐
证明.
求函数u=x2+y2+z2在约束条件z=x2+y2和x+y+z=4下的最大值和最小值。
设u=f(x,y,z)有连续的一阶偏导数,又函数y=y(x)及z=z(x)分别由下列两式确定exy-xy=2和ex=.
设u=arcsin,则du=________。
设闭区域D:x2+y2≤y,x≥0,f(x,y)为D上的连续函数,且求f(x,y).
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f’+(a)f’-(b)>0,且g(x)≠0(x∈[a,b]),g"(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得f(ξ)/g(ξ)=f"(ξ)/g"(ξ).
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明:存在ξ∈(a,b)使f’(ξ)/g’(ξ)+∫aξf(t)dt/∫ξbf(t)dt=0.
设有函数试分析在点x=0处,k为何值时,f(x)有极限;k为何值时,f(x)连续;k为何值时,f(x)可导.
试证:当x>0时,(x2﹣1)lnx≥(x-1)2.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,X1,X2是分别属于λ1和λ2的特征向量,试证明X1+X2不是A的特征向量.
随机试题
对我国社会主义初级阶段的社会主要矛盾作出规范表述的是()
简述头脑风暴法实施的基本要点。
输血需加温的是
患者,女,59岁。舌左侧缘中部溃烂5个月,约2.3cm×1.5cm×0.5cm大小,活检报告为“鳞癌”,下6残根,边缘锐利。舌癌的好发部位是
甲公司为制造业企业,2×16年产生下列现金流量:(1)收到客户定购商品预付款3000万元;(2)税务部门返还上年度增值税款600万元;(3)支付购入作为以公允价值计量且其变动计入当期损益的金融资产核算的股票投资款1200万元:(4)为补充营运资金不足,自股
毛泽东提出在科学文化领域里实行的方针是()。
去年国庆某商场2天时间的销售额为2000万元。今年该商场预计,国庆期间销售额达到7000万元是不成问题的。以下哪一项最能支持上述推理?
已知二叉树T的结点形式为(llink,data,count,rlink),在树中查找值为X的结点,若找到,则记数(count)加l;否则,作为一个新结点插入树中,插入后仍为二叉排序树,写出其非递归算法。
ThePetofModernPeopleWriteanessayof160-200wordsbasedonthedrawing.Inyouressay,youshould1)describethe
Shehasa_____knowledgeofFrench,butshecan’tresistshowingoffinpublic.
最新回复
(
0
)