首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶非零实矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,如果AT=A*,证明任一n维列向量均可由矩阵A的列向量线性表出.
设A是n阶非零实矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,如果AT=A*,证明任一n维列向量均可由矩阵A的列向量线性表出.
admin
2019-05-14
39
问题
设A是n阶非零实矩阵,A
*
是A的伴随矩阵,A
T
是A的转置矩阵,如果A
T
=A
*
,证明任一n维列向量均可由矩阵A的列向量线性表出.
选项
答案
因为A
*
=A
T
,按定义有A
ij
=a
ij
([*]i,j=1,2,…,n),其中A
ij
是行列式|A|中a
ij
的代数余子式. 由于A≠0,不妨设a
11
≠0,那么 |A|=a
11
A
11
+a
12
A
12
+…+a
1n
A
1n
=a
11
2
+a
12
2
+…+a
1n
2
≠0. 于是A=(α
1
,α
2
,…,α
n
)的n个列向量线性无关.那么对任一n维列向量β,恒有α
1
,α
2
,…,α
n
,β线性相关.因此β必可由α
1
,α
2
,…,α
n
线性表出.
解析
转载请注明原文地址:https://kaotiyun.com/show/xl04777K
0
考研数学一
相关试题推荐
求直线L:在平面∏:x一y+2z一1=0上的投影直线L0的方程,并求L0绕y轴旋转一周所成曲面的方程。
微分方程y’+y=e-xcosx满足条件y(0)=0的解为y=___________。
设f(x)在[a,b]上连续,a<x1<x2<…<xn<b,ci<0,i=1,2,…,n,证明存在ξ∈[a,b],使得
求由方程siny2=cos确定的隐函数y=y(x)的导函数y’(x)。
设函数y=y(x)由参数方程确定,求函数y=y(x)的极值和曲线y=y(x)的凹凸区间及拐点。
设f(x)在区间[0,2]上连续,在(0,2)内二阶可导,且f(0)=∫01f(x)dx=,证明:存在ξ∈(0,2),使得f"(ξ)=0。
求不定积分。
设有旋转抛物面S:z=(χ2,y2)与平面П:2χ+2y+z+6=0,P0(χ0,y0,z0)是S上与平面П距离最近的点.(Ⅰ)求点P0及S与П的最短距离;(Ⅱ)、求S存P0、点的法线.并证明它与平面П垂直.
设A,B都是n阶矩阵,且A2-AB=E,则r(AB-BA+2A)=_______.
设u=f(x,y,xyz),函数z=z(x,y)由exyz=h(xy+z一t)出确定,其中f连续可偏导,h连续,求.
随机试题
下列对复制和转录异同点的比较中正确的是
胰腺疾病与胆道疾病互相关系的解剖基础是
某女,24岁。患功能性子宫出血多年。就诊时面色苍白,倦怠无力,头晕目眩,少气懒言,心悸失眠,纳差,舌质淡胖。苔薄,脉细弱。血常规检查血红蛋白102g/L,血清铁浓度常为8.1μmol/L,骨髓铁染色显示骨髓小粒可染铁消失,铁粒幼红细胞12%。最可能的诊断
建筑工程管理方法的特点是()。
施工质量控制是为了实现施工质量目标而进行的()的系统过程。
证券投资基金的价格主要受()的影响。
中小学生营养午餐应遵循的原则()。
违约方依约向守约方支付违约金后,已支付定金的守约方还有权要求违约方双倍返还定金。 ( )
设,则()
(2009年上半年)小王正在负责管理一个产品开发项目。开始时产品被定义为“最先进的个人数码产品”,后来被描述为“先进个人通信工具”。在市场人员的努力下该产品与某市交通局签订了采购意向书,随后与用户、市场人员和研发工程师进行了充分的讨论后,被描述为“成本在1
最新回复
(
0
)