首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶非零实矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,如果AT=A*,证明任一n维列向量均可由矩阵A的列向量线性表出.
设A是n阶非零实矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,如果AT=A*,证明任一n维列向量均可由矩阵A的列向量线性表出.
admin
2019-05-14
38
问题
设A是n阶非零实矩阵,A
*
是A的伴随矩阵,A
T
是A的转置矩阵,如果A
T
=A
*
,证明任一n维列向量均可由矩阵A的列向量线性表出.
选项
答案
因为A
*
=A
T
,按定义有A
ij
=a
ij
([*]i,j=1,2,…,n),其中A
ij
是行列式|A|中a
ij
的代数余子式. 由于A≠0,不妨设a
11
≠0,那么 |A|=a
11
A
11
+a
12
A
12
+…+a
1n
A
1n
=a
11
2
+a
12
2
+…+a
1n
2
≠0. 于是A=(α
1
,α
2
,…,α
n
)的n个列向量线性无关.那么对任一n维列向量β,恒有α
1
,α
2
,…,α
n
,β线性相关.因此β必可由α
1
,α
2
,…,α
n
线性表出.
解析
转载请注明原文地址:https://kaotiyun.com/show/xl04777K
0
考研数学一
相关试题推荐
求微分方程y"’=e2x—cosx的通解。
求极限。
设函数f(x)由方程y一x=ex(1—y)确定,则=________。
设A是3阶矩阵,其特征值是1,2,-1,那么(A+2E)2的特征值是_______.
设函数f(χ)在[a,b]上连续,在(a,b)内可导,试证存在ξ,η,ζ∈(a,b),使得f′(ξ)=eζ-ηf′(η).
设φ(y)有连续导数,L为半圆周:(y≥χ),从点O(0,0)到点A(π,π)方向(见图25—1),求曲线积分I=∫L[φ(y)cosχ-y]dχ+[φ′(y)sinχ-1]dy.
假设随机事件A与B相互独立,P(A)=P()=a-1,P(A∪B)=7/9,求a的值.
(2000年)设函数f(x)在[0.π]上连续.且试证:在(0,π)内至少存在两个不同的点ξ1和ξ2,使f(ξ1)=f(ξ2)=0.
设μ=f(x,y,xyz),函数z=z(x,y)由exyz=∫xyzh(xy+z-t)dt确定,其中f连续可偏导,h连续,求.
设z=f(exsiny,xy),其中f二阶连续可偏导,求.
随机试题
Tenminutes______anhourwhenoneisexpectingaphonecall.
关于侧脑室脉络丛球钙斑的描述,错误的是
以下有关“药源性肾病的主要症状”的叙述中,不正确的是
2018年1月,注册会计师甲、乙、丙三人在北京成立了一家会计师事务所,性质为特殊普通合伙企业。甲、乙、丙在合伙协议中约定:(1)甲、丙分别以现金300万元和50万元出资,乙以一套房屋出资,作价200万元,作为会计师事务所的办公场所。(2)会计师事务所的
物业共用部位包括()。
师生沟通是搞好师生关系的前提。促进教师与学生良好沟通的心理条件是教师要具备()。
在下列选项中对分段式存储管理描述正确的是()。
社会主义初级阶段的起点是()
用Schmidt正交化方法将下列向量组规范正交化:α1=(1,1,1)T,α2=(-1,0,-1)T,α3=(-1,2,3)T.
Afterthreeyearsofpreciseanalysis,X-raysandinfra-red(红外线的)imaging,expertsclaimtohaveuncoveredtheonlysurvivingp
最新回复
(
0
)