首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3一2x2x3。 (Ⅰ)求二次型f的矩阵的所有特征值; (Ⅱ)若二次型f的规范形为y12+y22,求a的值。
设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3一2x2x3。 (Ⅰ)求二次型f的矩阵的所有特征值; (Ⅱ)若二次型f的规范形为y12+y22,求a的值。
admin
2018-04-18
64
问题
设二次型f(x
1
,x
2
,x
3
)=ax
1
2
+ax
2
2
+(a一1)x
3
2
+2x
1
x
3
一2x
2
x
3
。
(Ⅰ)求二次型f的矩阵的所有特征值;
(Ⅱ)若二次型f的规范形为y
1
2
+y
2
2
,求a的值。
选项
答案
(Ⅰ)二次型f(x
1
,x
2
,x
3
)对应的实对称矩阵为A=[*], |λE一A|=[*] =(λ一a)[(λ—a)(λ一a+1)一1]一[0+(λ一a)] =(λ一a)[(λ一a)(λ一a+1)一2]=(λ一a)[λ
2
一2aλ+λ+a
2
一a一2] =(λ-a){λ+[*]}=(λ-a)(λ-a+2)(λ一a一1)。 则λ
1
=a,λ
2
=a一2,λ
3
=a+1。 (Ⅱ)方法一:若规范形为y
1
2
+y
2
2
,说明有两个特征值为正,一个为0。则由于a一2<a<a+1,所以a一2=0,即a=2。 方法二:由于f的规范形为y
1
2
+y
2
2
,所以A合同于[*],其秩为2,故|A|=λ
1
,λ
2
,λ
3
=0,于是a=0或a=一1或a=2。当a=0时,λ
1
=0,λ
2
=1,λ
3
=一2,此时f的规范形为y
1
2
-y
2
2
,不合题意。 当a=一1时,λ
1
=一1,λ
2
=0,λ
3
=一3,此时f的规范形为一y
1
2
-y
2
2
,不合题意。当a=2时,λ
1
=2,λ
2
=3,λ
3
=0,此时f的规范形为y
1
2
+y
2
2
。 综上可知,a=2。
解析
转载请注明原文地址:https://kaotiyun.com/show/xpX4777K
0
考研数学三
相关试题推荐
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为(1,2,2,1)T+c(1,一2,4,0)T,c任意.记β=(α3,α2,α1,β一α4).求方程组Bx=α1一α2的通解.
已知矩阵A相似于B.A*为A的伴随矩阵,则|A*+3E|=________.
设A是m×n矩阵,且方程组Ax=β有解,则
已知A是3阶矩阵,A的特征值为1,2,3.则(A*)*的最大特征值为________.
对于实数x>0,定义对数函数lnx=.依此定义试证:(1)ln=-lnx(x>0);(2)ln(xy)=lnx+1ny(x>0,y>0).
已知α1=[1,2,-3,1]T,α2=[5,-5,a,11]T,α3=[1,-3,6,3]T,α4=[2,-1,3,a]T.问:(1)a为何值时,向量组α1,α2,α3,α4线性相关;(2)a为何值时,向量组α1,α2,α3,α4线性无关;(3)a
设A为n阶实矩阵,则对线性方程组(Ⅰ)AX=0和(Ⅱ)ATAX=0,必有()
实二次型f(x1,x2,…,xn)的秩为r,符号差为s,且f和-f合同,则必有()
判别下列正项级数的敛散性:(Ⅰ),其中{xn}是单调递增而且有界的正数数列.
随机试题
关于卡托普利,下列说法错误的是
设平面区域D:x2+y2≤a2,则=()。
施工现场所使用的安全警示标志()。
某高校教师某月获得稿费2万元,则其就这笔稿费需要缴纳的个人所得税的数额为()元
我国教育的根本特点:()。
2018年5月,刘某家中失窃,经公安机关初步侦查,赵某被列为嫌疑对象,为此,公安机关对赵某采取了监视居住的强制措施。6月1日,公安机关对赵某予以传唤讯问,6月5日向赵某送达监视居住决定书。6月15日,公安机关口头宣布解除监视居住,但未作出任何结论,赵某不服
本杰明-富兰克林是美国历史上唯一一位参与签署美国立国的四大文件的人,包括《独立宣言》《美法同盟条约》《巴黎和约》《美国宪法》。
一家商场按下述方式促销商品:一年中任何时候,或者有季节性促销,或者有节日促销,或者两者兼而有之。每一种促销都会持续一个月。在任何一个月,如果商场想要把某一类商品清仓,就宣布季节性促销;如果某个月份有节日并且仓库中仍有剩余商品,就宣布节日促销。不过,11月没
=__________。
Somefarmersmayreplantcorn.Othersmay【S1】______cornwithsoybeans(大豆).Whatfarmersdonowdependspartlyonthe【S2】______of
最新回复
(
0
)