首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设φ(y)有连续导数,L为半圆周:(y≥x),从点O(0,0)到点A(π,π)方向,求曲线积分 I=∫L[φ(y)cosx—y]dx+[φ’(y)sinx一1]dy。
设φ(y)有连续导数,L为半圆周:(y≥x),从点O(0,0)到点A(π,π)方向,求曲线积分 I=∫L[φ(y)cosx—y]dx+[φ’(y)sinx一1]dy。
admin
2019-01-23
53
问题
设φ(y)有连续导数,L为半圆周:
(y≥x),从点O(0,0)到点A(π,π)方向,求曲线积分
I=∫
L
[φ(y)cosx—y]dx+[φ’(y)sinx一1]dy。
选项
答案
若要用格林公式求非闭曲线L上的线积分∫
L
Pdx+Qdy时,先要添加定向辅助线L
1
使L∪L
1
构成闭曲线,所围区域为D,若是正向边界,则[*].若是负向边界,则 [*] 求∫
L
Pdx+Qdy转化为求辅助线L
1
上的线积分和一个二重积分,如果它们都容易计算的话,则达目的. 如图10.5所示,L是非闭曲线,再加直线段[*],使它们构成沿顺时针方向的闭曲线,并把它们围成的区域记为D.L与[*]构成D的负向边界. 记P(x,y)=φ(y)cosx一y,Q(x,y)=φ’(y)sinx—1,则 [*] 因此,在D上用格林公式得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/xuM4777K
0
考研数学一
相关试题推荐
设随机变量X与Y相互独立,且X~B(5,0·8),Y~N(1,1),则P{0<X+Y<10}≥______.
设A是n阶非零实矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,如果AT=A*,证明任一n维列向量均可由矩阵A的列向量线性表出.
向直线上掷一随机点,假设随机点落入区间(一∞,0],(0,1]和(1,+∞)的概率分别为0.2,0.5和0.3,并且随机点在区间(0,1]上分布均匀.设随机点落入(一∞,0]得0分,落入(1,+∞)得1分,而落入(0,1]坐标为x是点得x分,试求得分X的分
设函数f(u,v)具有二阶连续偏导数,函数g(y)连续可导,且g(y)在y=1处取得极值g(1)=2.求复合函数z=f(xg(y),x+y)的二阶混合偏导数在点(1,1)处的值.
求下列二重积分的累次积分
直线L1:x-1=,L2:x+1=y-1=z,(Ⅰ)若L1⊥L2,求λ;(Ⅱ)若L1与L2相交,求λ.
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明存在ξ∈(a,b),使=0.
设单位质点在水平面内作直线运动,初速度v|t=0=v0.已知阻力与速度成正比(比例系数为1),问t为多少时此质点的速度为?并求到此时刻该质点所经过的路程.
设f(x)是满足的连续函数,且当x→0时,∫0xf(t)dt是与xn同阶的无穷小量,求正整数n.
求微分方程y2dx+(2xy+y2)dy=0的通解.
随机试题
51.根据现行国家标准《建筑内部装修设计防火规范》(GB50222),下列装修装饰材料中,不属于其他装修装饰材料的是()。
无牙牙合患者修复前做牙槽嵴修整的主要目的是
产后10天,左乳胀痛发热。查体:体温38.7℃,左乳外上象限皮温度,红肿有压痛,肿块约5cmx5cm大小,中心有波动感。最恰当的治疗方法是
施工安全管理体系遵循PDCA循环模式运行,是一个( )。
一大型铁路工程招标要求投标企业具有铁路施工总承包特级资质,某具有铁路施工总承包一级资质施工企业(代号X)借用具有投标资格的A集团公司之名参与投标,并联合参与投标的B、C、D集团公司统一报价后A集团公司中标,X企业自行组织项目部进场施工并向A集团公司支付了一
导游员要做到有针对性的讲解,必须注意研究客人的心理,集中精力对客人的需求做出准确的判断,在讲解之前做到心中有数,有备而讲。()
民航规定出售儿童半价票的年龄为()。
在一个单CPU的计算机系统中,有两台外部设备R1、R2和三个进程P1、P2、P3。系统采用可剥夺式优先级的进程调度方案,且所有进程可以并行使用I/O设备,三个进程的优先级、使用设备的先后顺序和占用设备时间如下表所示:假设操作系统的开销忽略不计,三个进程
TheLandofDisneyPredictingthefutureisalwaysrisky.Butit’sprobablysafetosaythatatleastafewhistorianswill
A、Tomorrow.B、Today.C、Yesterday.D、Thedayaftertomorrow.A对话结尾部分女士说这样的优惠很具有吸引力,男士说这次促销活动明天就结束了。由此可见,促销的结束时间是明天。
最新回复
(
0
)