首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs,β都是n维向量,证明:r(α1,α2,…,αs,β)=
设α1,α2,…,αs,β都是n维向量,证明:r(α1,α2,…,αs,β)=
admin
2018-11-20
30
问题
设α
1
,α
2
,…,α
s
,β都是n维向量,证明:r(α
1
,α
2
,…,α
s
,β)=
选项
答案
证明:把α
1
,α
2
,…,α
s
的一个最大无关组放在α
1
,α
2
,…,α
s
,β中考察,看它是否也是α
1
,…,α
s
,β的最大无关组. 设(I)是α
1
,α
2
,…,α
s
的一个最大无关组,则它也是α
1
,α
2
,…,α
s
,β中的一个无关组. 问题是:(I)增添β后是否相关? 若β可用α
1
,α
2
,…,α
s
表示,则β可用(I)表示(因为α
1
,α
2
,…,α
s
和(I)等价!),于是(I)增添β后相关,从而(I)也是α
1
,α
2
,…,α
s
,β的最大无关组,r(α
1
,α
2
,…,α
s
,β)=r(α
1
,α
2
,…,α
s
). 若β不可用α
1
,α
2
,…,α
s
表示,则β不可用(I)表示,(I)增添β后无关,从而(I)不是α
1
,α
2
,…,α
s
,β的最大无关组,此时(I),β是α
1
,α
2
,…,α
s
,β的最大无关组,r(α
1
,α
2
,…,α
s
,β)=r(α
1
,α
2
,…,α
s
)+1.
解析
转载请注明原文地址:https://kaotiyun.com/show/xuW4777K
0
考研数学三
相关试题推荐
设A为n阶矩阵,A2=A,则下列成立的是().
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(b)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.证明:|f(c)|≤2a+.
10件产品有3件次品,7件正品,每次从中任取一件,取后不放回,求下列事件的概率:已知前两次没有取到次品,第三次取得次品;
设总体X~N(μ,σ2),其中μ已知,σ2>0为未知参数,X1,X2,…,Xn是来自总体X的样本,则σ2的置信度为1一a的置信区间为().
已知随机变量X,Y,Z相互独立,且X~N(μ,σ2),P(X<0)=0.2,则P(μ<5X+4Y一3Z<7μ)=().
已知二维非零向量X不是二阶方阵A的特征向量.(1)证明X,AX线性无关;(2)若A2X+AX一6X=0,求A的特征值,并讨论A可否对角化.
设A,B为随机事件,且(Ⅰ)求二维随机变量(X,Y)的概率分布;(Ⅱ)求X和Y的相关系数ρXY。
设某种元件的使用寿命X的概率密度为f(x;θ)=其中0>0为未知参数。又设x1,x2,…,xn是X的一组样本观测值,求参数θ的最大似然估计值。
设a为常数,讨论方程ex=ax2的实根个数。
随机试题
关于校对质疑的处理,说法正确的有()。
古丽平时在单位只埋头处理自己的事情,不跟其他人交流,来单位一年只认识自己处室的人,其他人都不认识,你认同古丽的做法吗?为什么?
什么是单活塞杆液压缸的差动连接?
公司应当自作出减少注册资本决议之日起______日内通知债权人。
女性,45岁,间歇性发作咽下困难3个月,伴反酸烧心,可因情绪波动诱发。食管造影未见异常
病原体自宿主体内排出,并停留在外环境中,然后侵入到新的宿主体内,这是
根据关税法律制度的规定,下列各项中,应计入进口货物关税完税价格的有( )。
下列拒绝或阻碍人民警察依法执行职务的行为中,应给予治安管理处罚的是()。
他们本着保证质量、降低成本、便于服务为原则,改革了处方、工艺和剂型。
A、Theylistedthelanguagestheyuse.B、Theylearnedacreatedlanguage.C、Theytoldhowtheylearnalanguage.D、Theyidentifie
最新回复
(
0
)