首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs,β都是n维向量,证明:r(α1,α2,…,αs,β)=
设α1,α2,…,αs,β都是n维向量,证明:r(α1,α2,…,αs,β)=
admin
2018-11-20
51
问题
设α
1
,α
2
,…,α
s
,β都是n维向量,证明:r(α
1
,α
2
,…,α
s
,β)=
选项
答案
证明:把α
1
,α
2
,…,α
s
的一个最大无关组放在α
1
,α
2
,…,α
s
,β中考察,看它是否也是α
1
,…,α
s
,β的最大无关组. 设(I)是α
1
,α
2
,…,α
s
的一个最大无关组,则它也是α
1
,α
2
,…,α
s
,β中的一个无关组. 问题是:(I)增添β后是否相关? 若β可用α
1
,α
2
,…,α
s
表示,则β可用(I)表示(因为α
1
,α
2
,…,α
s
和(I)等价!),于是(I)增添β后相关,从而(I)也是α
1
,α
2
,…,α
s
,β的最大无关组,r(α
1
,α
2
,…,α
s
,β)=r(α
1
,α
2
,…,α
s
). 若β不可用α
1
,α
2
,…,α
s
表示,则β不可用(I)表示,(I)增添β后无关,从而(I)不是α
1
,α
2
,…,α
s
,β的最大无关组,此时(I),β是α
1
,α
2
,…,α
s
,β的最大无关组,r(α
1
,α
2
,…,α
s
,β)=r(α
1
,α
2
,…,α
s
)+1.
解析
转载请注明原文地址:https://kaotiyun.com/show/xuW4777K
0
考研数学三
相关试题推荐
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且=M.证明:f’(x0)=M.
已知F(x),g(x)连续可导,且f’(x)=g(x),g’(x)=f(x)+φ(x),其中φ(x)为某已知连续函数,g(x)满足微分方程g’(x)-xg(x)=cosx+φ(x),求不定积分∫xf"(x)dx.
设随机变量X的分布函数为对X独立观测3次,则3次结果都不超过1的概率为________.
设随机变量X与Y相互独立,且都服从[0,1]上的均匀分布,试求:(Ⅰ)U=XY的概率密度fU(u);(Ⅱ)V=|X—Y|的概率密度fV(υ)。
设三阶矩阵A的特征值λ1=1,λ2=2,λ3=3对应的特征向量依次为α1=(1,1,1)T,α2=(1,2,4)T,α3=(1,3,9)T。(Ⅰ)将向量β=(1,1,3)T用α1,α2,α3线性表示;(Ⅱ)求ATβ。
设总体X的概率密度为为样本均值。(Ⅰ)求参数λ的矩估计量;(Ⅱ)求参数λ的最大似然估计量。
设随机变量X和Y均服从B(1,)且D(X+Y)=1,则X与Y的相关系数ρ=________。
设a为常数,讨论方程ex=ax2的实根个数。
设f=x12+x22+5x32+2ax1x2—2x1x3+4x2x3为正定二次型,则未知系数a的范围是________。
随机试题
女,58岁,咳嗽,咳血丝痰1个月,有低热及右胸痛,X线示右胸中等量积液。胸腔穿刺液检查示:淡红色,比重1.018,蛋白30g/L,细胞数0.5×109/L,ADA35U/L,CEA2%g/L,胸液未找到癌细胞及抗酸杆菌。最应考虑的是
照射量的SI单位是
患者,女76岁,以反复胸闷伴心悸5年为主诉就诊,患者此次发生心悸,持续6h不缓解,伴呼吸困难,不能平卧,咳嗽,咳少量泡沫样痰,BP110/86mmHg,听诊HR130/min,首选的治疗为
同病异治的实质是
男,7岁,突发寒战,高热,右膝下方剧痛3天,查体T39.8℃,P86次/分,R25次/分,BP110/60mmHg。烦躁不安,右膝关节呈半屈曲状,拒动,右小腿近端皮温高,肿胀不明显,压痛阳性。早期确诊最可靠的是()
又被称为第三方担保的是()
根据土地增值税规定,下列表述正确的有( )。
某公司一批优秀的中层干部竞选总经理职位。所有的竞选者除了李女士自身外,没有人能同时具备她的所有优点。从以上断定能合乎逻辑地得出以下哪项结论?()
改革开放以来,我省“扫黄”“打非”工作从未间断过,但文化市场中“制黄”“贩黄”“盗版”“盗印”等违法犯罪活动也从未停止,时有回潮。有人将“扫黄”“打非”屡打不绝的原因归纳为以下6个方面:(1)有关法律法规不完善。(2)存在有法不依、违法
萨皮尔一沃尔夫假说的形成——2004年英译汉及详解Therelationoflanguageandmindhasinterestedphilosophersformanycenturies.【F1】TheGreeksassum
最新回复
(
0
)