首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设随机变量的分布函数为F(y)=1-e-y(y>0),F(y)=0(y≤0).考虑随机变量 求X1和X2的联合概率分布.
假设随机变量的分布函数为F(y)=1-e-y(y>0),F(y)=0(y≤0).考虑随机变量 求X1和X2的联合概率分布.
admin
2017-06-12
62
问题
假设随机变量的分布函数为F(y)=1-e
-y
(y>0),F(y)=0(y≤0).考虑随机变量
求X
1
和X
2
的联合概率分布.
选项
答案
P(X
1
=0,X
2
=0)=P(Y≤1,Y≤2) =P(Y≤1) =1-e
-1
. P(X
1
=0,X
2
=1)=P(Y≤l,Y>2) =0. P(X
1
=1,X
2
=0)=P(Y>1,Y≤2) =P(1<Y≤2) =F(2)-F(1) =1-e
-2
-(1-e
-1
) =e
-1
-e
-2
. P(X
1
=1,X
2
=1)=P(Y>1,y>2) =P(Y>2) =1-P(Y≤2) =1-(1-
-2
) =e
-2
. 故X
1
和X
2
的联合概率分布为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/y4u4777K
0
考研数学一
相关试题推荐
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:存在η∈(1/2,1),使f(η)=η;
当k=________时,向量β=(1,k,5)能由向量α1=(1,-3,2),α2=(2,-1,1)线性表示.
设α1=(2,-1,0,5),α2=(-4,-2,3,0),α3=(-1,0,1,k),α4=(-1,0,2,1),则k=________时,α1,α2,α3,α4线性相关.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵.若(1,0,1,0)T是方程组Ax=0的一一个基础解系,则A*x=0的基础解系可为
设奇函数f(x)在[-1,1]上具有2个阶导数,且f(x)=1。证明:存在ξ∈(0,1),使得f’(ξ)=1;
在电炉上安装了四个温控器,其显示温度的误差是随机的,在使用过程中,只要有两个温控器显示的温度不低于临界温度to,电炉就断电,以E表示事件“电炉断电”,设T(1)≤T(2)≤T(3)≤T(4)为四个温控器显示的按递增顺序排列的温度值,则事件E等于()
设随机变量x的概率密度为令Y=X2,F(x,y)为二维随机变量(X,Y)的分布函数,求:(Ⅰ)Y的概率密度fY(y);(Ⅱ)cov(X,Y);(Ⅲ)F(-1/2,4).
设随机变量X在区间[-1,2]上服从均匀分布,随机变量Y=,则方差D(y)=___________.
设X1,X2,X3(n>1)是来自总体N(μ,σ)的随机样本,用2X2,-X1,及X1作总体参数μ为估计算时,最有效的是________.
随机试题
阅读王安石的《读孟尝君传》,然后回答。世皆称孟尝君能得士,士以故归之,而卒赖其力以脱于虎豹之秦。嗟乎!孟尝君特鸡鸣狗盗之雄耳,岂足以言得士?然,擅齐之强,得一士焉,宜可以南面而制秦,尚何取鸡鸣狗盗之力哉?夫鸡鸣狗盗之出其门,此士之所以不至也。
A.下叶后基底段B.上叶后段或下叶背段C.上叶尖后段和下叶背段D.左下叶和舌叶吸入性肺脓肿坐位时好发于
老年人口比重是指
[2013年,第79题]在一个孤立静止的点电荷周围()。
下列装饰装修施工事项中,所增加的荷载属于集中荷载的有()。
国家预算收入包括()。
一个人吃()为1个人日。
一般来说,构成课的基本组成部分是:__________、复习过渡、讲授新教材、巩固新教材、布置课外作业。
英国石油公司在墨西哥湾的油井发生爆裂,大量原油泄漏。该公司立即并持续使用化学分散剂来分解浮油。美国众议院能源和环境委员会主席埃德.写基对化学分散剂的安全性提出了严重质疑。美国国家食品和药物管理局负责人的回应是:“化学分散剂是安全的,除非有任何报告显示这种化
Hehadmoralobjectionsto(kill)______animalsforfood.
最新回复
(
0
)