首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(一∞,+∞)内二阶可导,且f(x)和f"(x)在(一∞,+∞)内有界,证明:f’(x)在(一∞,+∞)内有界.
设函数f(x)在(一∞,+∞)内二阶可导,且f(x)和f"(x)在(一∞,+∞)内有界,证明:f’(x)在(一∞,+∞)内有界.
admin
2016-06-25
71
问题
设函数f(x)在(一∞,+∞)内二阶可导,且f(x)和f"(x)在(一∞,+∞)内有界,证明:f’(x)在(一∞,+∞)内有界.
选项
答案
存在正常数M
0
,M
2
,使得[*]z∈(一∞,+∞),恒有 |f(x)|≤M
0
,|f"(x)|≤M
2
. 由泰勒公式,有 [*] 因此函数f’(x)在(一∞,+∞)内有界.
解析
转载请注明原文地址:https://kaotiyun.com/show/yIt4777K
0
考研数学二
相关试题推荐
某人的食量是2500卡/天,其中1200卡/天用于基本的新陈代谢,在健身运动中,他所消耗的为16卡/千克/天乘以他的体重.假设以脂肪形式储存的热量百分之百有效,而一千克脂肪含热量10000卡,求该人体重怎样随时间变化?
设y=y(x)二阶可导,且y′≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程d2x/dy2+(y+sinx)(dx/dy)3=0变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y′(
以y=C1ex+ex(C2cosx+C3sinx)为通解的三阶常系数齐次线性微分方程为________.
设f(x)在(-∞,+∞)上有定义,且对任意的x,y∈(-∞,+∞)有|f(x)-f(y)|≤|x-y|.证明:|∫abf(x)dx-(b-a)f(a)|≤1/2(b-a)2.
求二元函数z=f(x,y)=x2y(4-x-y)在由x轴、y轴及x+y=6所围成的闭区域D上的最小值和最大值.
设直线y=ax与抛物线y=x2所围成的图形面积为S1,它们与直线x=1所围成的图形面积为S2,且a<1.(1)确定a,使S1+S2达到最小,并求出最小值;(2)求该最小值所对应的平面图形绕x轴旋转一周所得旋转体的体积.
求下列函数的不定积分。
设f(x)在[0,n](n为自然数,n≥2)上连续,f(0)=f(n),证明:存在ξ,ξ+1∈[0,n],使f(ε)=f(ε+1).
求差分方程yx+1+2yx=x2+4x的通解。
求下列微分方程的通解。(ex+y-ex)dx+(ex+y+ey)dy=0
随机试题
青霉素类药物采用可见紫外分光光度法测定含量,以下叙述正确的有
胸胁肋间饱满,咳唾引痛此属()
在编制成本支出计划时,为避免可能发现个别工程量表中某项内容的工程量计算有较大出入,使原来的成本预算失实,要在主要的分项工程中安排适当的()。
目前,我国的基金管理费、基金托管费是按( )的一定比例逐日计提,按月支付。
下列关于零基预算的说法错误的是( )。
中外合作者选择以有限责任公司形式设立中外合作经营企业的,应当按照合作各方的出资比例进行利润分配。()
根据证券法律制度的规定,合格投资者应当具备相应的风险识别和承担能力,能够自行承担公司债券的投资风险,并符合一定资质条件。下列投资者中,符合该资质条件的有()。
学生心理发展具有的基本特征有()。
以下关于ARM处理器内核说法正确的是()。
Formorethanacenturytheroadwasthe【C1】______formoflandtransportationinmuchoftheworld.Itwas,and【C2】______,theo
最新回复
(
0
)