首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2016年] 已知y1(x)=ex,y2(x)=u(x)ex是二阶微分方程(2x—1)y"-(2x+1)y′+2y=0的解,若u(一1)=e,u(0)=-1,求u(x),并写出该微分方程的通解.
[2016年] 已知y1(x)=ex,y2(x)=u(x)ex是二阶微分方程(2x—1)y"-(2x+1)y′+2y=0的解,若u(一1)=e,u(0)=-1,求u(x),并写出该微分方程的通解.
admin
2021-01-19
55
问题
[2016年] 已知y
1
(x)=e
x
,y
2
(x)=u(x)e
x
是二阶微分方程(2x—1)y"-(2x+1)y′+2y=0的解,若u(一1)=e,u(0)=-1,求u(x),并写出该微分方程的通解.
选项
答案
先用特解代入法求出u(x)所满足的方程,解此方程求出u(x),得到两个线性无关的特解,再利用命题1.6.3.1(1)写出所给方程的通解. 易求得y′
2
(x)=[u(x)+u′(x)]e,y"
2
(x)=(u"+2u′+u)e
x
.将其代入所给方程得到 (2x—1)u"+(2x-3)u′=0, 令P=u′,则P′=u",(2x-1)p′+(2x-3)p=0,即P′+[*]P=0. 解得P=c
1
(2x一1)e
-x
,即[*]=c
1
(2x-1)e
-x
,故 u(x)=f c
1
(2x一1)e
-x
dx+c
2
=一c
1
(2x+1)e
-x
+c
2
, 由u(一1)=e,u(0)=一1得[*] 由式①一式②得c
1
(e+1)=e+1,故c
1
=1,从而c
2
=0. 故u(x)=一(2x+1)e
-x
,则y
1
(x)=一(2x+1)e
-x
·e
x
=一(2x+1). 因y
1
(x)与y
2
(x)线性无关,故所给方程的通解为 y=k
1
y
1
(x)+k
2
y
2
(x)=k
1
e
-x
=k
2
(2x+1), 其中k
1
,k
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/yV84777K
0
考研数学二
相关试题推荐
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+BTA正定.
设总体X服从参数为λ的泊松分布P(λ),X1,X2,…,Xn为来自总体X的简单随机样本,为样本均值.证明T=是P{X=0}的无偏估计量.
(Ⅰ)求积分f(t)=∫01lndχ(-∞<t<+∞).(Ⅱ)求
函数F(χ)=(χ∈(-∞,+∞))的值域区间是_______.
过坐标原点作曲线y=ex的切线,该切线与曲线y=ex以及x轴围成的向x轴负向无限伸展的平面图形记为D.求(Ⅰ)D的面积A;(Ⅱ)D绕直线x=1旋转一周所成的旋转体的体积V.
已知当x→0时,函数f(x)=x2一tanx2与cxk是等价无穷小量,则()
在下列微分方程中,以y=(c1+χ)e-χ+c2e2χ(c1,c2是任意常数)为通解的是()
设函数f(x)(x≥0)连续可微,f(0)=1,已知曲线y=f(x),x轴,y轴及过点(x,0)且垂直于x轴的直线所围成的图形的面积与曲线y=f(x)在[0,x]上的弧长值相等,求f(x).
设fn(x)=x﹢x2﹢…﹢xn-1(n=2,3,…).(I)证明方程fn(x)=0在区间[0,﹢∞)内存在唯一的实根,记为xn;(Ⅱ)求(I)中的{xn)的极限值.
随机试题
青少年好发的肿瘤为()。
Farmersareallowedtogrowsmallgardensoftheirownandtheyselltheirvegetables______theblackmarket.
如果取精液检查,应在检查前至少几天内不排精。
华支睾吸虫对人的危害主要是
关于胰岛素治疗,下列不妥的是下列哪一部位不可注射胰岛素
治疗成人呼吸窘迫综合征最有效的措施为()
《中华人民共和国广告法》规定,药品、医疗器械广告不得有的内容是()
设齐次线性方程组当方程组有非零解时,k值为:
某工业企业仅生产甲产品,采用品种法计算产品成本。3月初在产品直接材料成本130万元,直接人工成本18万元,制造费用10万元。3月份发生直接材料成本80万元,直接人工成本4871元,制造费用6万元。3月末甲产品完工100件,在产品200件。月末计算完工产品成
Translatingisacomplexandfascinatingtask.Infact,A.Richardshasclaimedthatitisprobablythemostcomplextypeofeve
最新回复
(
0
)