首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2016年] 已知y1(x)=ex,y2(x)=u(x)ex是二阶微分方程(2x—1)y"-(2x+1)y′+2y=0的解,若u(一1)=e,u(0)=-1,求u(x),并写出该微分方程的通解.
[2016年] 已知y1(x)=ex,y2(x)=u(x)ex是二阶微分方程(2x—1)y"-(2x+1)y′+2y=0的解,若u(一1)=e,u(0)=-1,求u(x),并写出该微分方程的通解.
admin
2021-01-19
78
问题
[2016年] 已知y
1
(x)=e
x
,y
2
(x)=u(x)e
x
是二阶微分方程(2x—1)y"-(2x+1)y′+2y=0的解,若u(一1)=e,u(0)=-1,求u(x),并写出该微分方程的通解.
选项
答案
先用特解代入法求出u(x)所满足的方程,解此方程求出u(x),得到两个线性无关的特解,再利用命题1.6.3.1(1)写出所给方程的通解. 易求得y′
2
(x)=[u(x)+u′(x)]e,y"
2
(x)=(u"+2u′+u)e
x
.将其代入所给方程得到 (2x—1)u"+(2x-3)u′=0, 令P=u′,则P′=u",(2x-1)p′+(2x-3)p=0,即P′+[*]P=0. 解得P=c
1
(2x一1)e
-x
,即[*]=c
1
(2x-1)e
-x
,故 u(x)=f c
1
(2x一1)e
-x
dx+c
2
=一c
1
(2x+1)e
-x
+c
2
, 由u(一1)=e,u(0)=一1得[*] 由式①一式②得c
1
(e+1)=e+1,故c
1
=1,从而c
2
=0. 故u(x)=一(2x+1)e
-x
,则y
1
(x)=一(2x+1)e
-x
·e
x
=一(2x+1). 因y
1
(x)与y
2
(x)线性无关,故所给方程的通解为 y=k
1
y
1
(x)+k
2
y
2
(x)=k
1
e
-x
=k
2
(2x+1), 其中k
1
,k
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/yV84777K
0
考研数学二
相关试题推荐
举例说明多元函数连续不一定可偏导,可偏导不一定连续.
求
求极限,其中n是给定的自然数.
eπ与πe谁大谁小,请给出结论并给予严格的证明(不准用计算器).
设f(x)在(-∞,+∞)上有定义,且对任意的x,y∈(-∞,+∞)有|f(x)-f(y)|≤|x-y|.证明:
设函数y=f(x)存在二阶导数,且f’(x)≠0.(I)请用y=f(x)的反函数的一阶导数、二阶导数表示;(Ⅱ)求满足微分方程的x与y所表示的关系式的曲线,它经过点(1,0),且在此点处的切线斜率为,它经过点(1,0),且在此点处的切线斜率为,在此曲线
已知数列
求极限:
[2006年]求dx.
数列极限I=n2[arctan(n+1)—arctann]=___________.
随机试题
Progressiveandreactionarypopulistmovementsarenotnecessarily_________:eachmay,andusuallydoes,possessthefeaturesof
《报刘一丈书》主要刻画的人物形象不包括()
患儿,男。生后半个月发现左颈部包块,较硬,头向左偏,下颌转向右侧,6个月后颈部包块开始变小,面部不对称,在医院诊为先天性肌性斜颈,手术最佳年龄
患者,女性,28岁。胃脘胀痛,痛引两胁,常因情志不遂而诱发或加重,嗳气,泛酸,口苦,舌淡红,苔薄白,脉弦。治疗方法是
个别资金成本是单种筹资方式的资金成本,主要包括()等。
下列关于战略管理表述的选项中,错误的是()。
公民权利中最基本、最重要、内涵最为丰富的一项权利是()。
教育申诉制度的性质是属于()。
把下面的六个图形分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是:
Threehundredyearsagonewstravelledbywordofmouthorletter,andcirculatedintavernsandcoffeehousesintheformofpa
最新回复
(
0
)