首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2016年] 已知y1(x)=ex,y2(x)=u(x)ex是二阶微分方程(2x—1)y"-(2x+1)y′+2y=0的解,若u(一1)=e,u(0)=-1,求u(x),并写出该微分方程的通解.
[2016年] 已知y1(x)=ex,y2(x)=u(x)ex是二阶微分方程(2x—1)y"-(2x+1)y′+2y=0的解,若u(一1)=e,u(0)=-1,求u(x),并写出该微分方程的通解.
admin
2021-01-19
36
问题
[2016年] 已知y
1
(x)=e
x
,y
2
(x)=u(x)e
x
是二阶微分方程(2x—1)y"-(2x+1)y′+2y=0的解,若u(一1)=e,u(0)=-1,求u(x),并写出该微分方程的通解.
选项
答案
先用特解代入法求出u(x)所满足的方程,解此方程求出u(x),得到两个线性无关的特解,再利用命题1.6.3.1(1)写出所给方程的通解. 易求得y′
2
(x)=[u(x)+u′(x)]e,y"
2
(x)=(u"+2u′+u)e
x
.将其代入所给方程得到 (2x—1)u"+(2x-3)u′=0, 令P=u′,则P′=u",(2x-1)p′+(2x-3)p=0,即P′+[*]P=0. 解得P=c
1
(2x一1)e
-x
,即[*]=c
1
(2x-1)e
-x
,故 u(x)=f c
1
(2x一1)e
-x
dx+c
2
=一c
1
(2x+1)e
-x
+c
2
, 由u(一1)=e,u(0)=一1得[*] 由式①一式②得c
1
(e+1)=e+1,故c
1
=1,从而c
2
=0. 故u(x)=一(2x+1)e
-x
,则y
1
(x)=一(2x+1)e
-x
·e
x
=一(2x+1). 因y
1
(x)与y
2
(x)线性无关,故所给方程的通解为 y=k
1
y
1
(x)+k
2
y
2
(x)=k
1
e
-x
=k
2
(2x+1), 其中k
1
,k
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/yV84777K
0
考研数学二
相关试题推荐
设函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式f’(x)+f(x)一∫0xf(t)dt=0。证明:当x≥0时,成立不等式e-x≤f(x)≤1。
设f(χ)在区间[0,1]上可导,f(1)=2χ2f(χ)dχ.证明:存在ξ∈(0,1),使得2f(ξ)+ξf′(ξ)=0.
设n阶方阵A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn),记向量组Ⅰ:α1,α2,…,αn,Ⅱ:β1,β2,…,βn,Ⅲ:γ1,γ2,…,γn,如果向量组Ⅲ线性相关,则()
当陨石穿过大气层向地面高速坠落时,陨石表面与空气摩擦产生的高温使陨石燃烧并不断挥发,实验证明,陨石挥发的速率(即体积减少的速率)与陨石表面积成正比,现有一陨石是质量均匀的球体,且在坠落过程中始终保持球状,若它在进入大气层开始燃烧的前3s内,减少了体积的7/
设A为三阶非零方阵,而且AB=0,则t=().
设函数f(x)有三阶导数,且=1,则()
设η1,η2,η3为3个n维向量,AX=0是n元齐次方程组,则()正确.
设函数,数列{xn}满足lnxn+<1。证明xn存在,并求此极限。[img][/img]
[2008年]微分方程(y+x2e-x)dx—xdy=0的通解是y=_________.
随机试题
1860年南丁格尔创建世界上第一所正式的护士学校的地点是
在结构化系统设计方式中,处理程序的设计需要详细描述各种处理所用的()
有关负压吸宫术的描述,正确的是
设A,B均为n阶非零矩阵,且AB=0,则R(A),R(B)满足()。
所有者权益变动表只是反映企业在一定期间未分配利润的增减变动情况的报表。()
Theterme-commercereferstoallcommercialtransactionsconductedovertheInternet,includingtransactionsbyconsumersandb
判决宣告的数个主刑均为有期徒刑的,数罪并罚时采用()。
下列不可能出现的天文现象()。
Manypeopleconsiderthewideruseofbiofuelsapromisingwayofreducingtheamountofsurpluscarbondioxide(CO2n)beingpum
From:KeithRogersTo:EmilyRhodesSubject:ShippingConferenceDate:August11DearMs.Rhodes,Iamema
最新回复
(
0
)