首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2008年] 设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1.对任意t∈[0,+∞),由直线x=0,x=t,曲线y=f(x)以及z轴所围成的曲边梯形绕x轴旋转一周生成一旋转体.若该旋转体的侧面面积在数值上等于其体积的2倍,求函
[2008年] 设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1.对任意t∈[0,+∞),由直线x=0,x=t,曲线y=f(x)以及z轴所围成的曲边梯形绕x轴旋转一周生成一旋转体.若该旋转体的侧面面积在数值上等于其体积的2倍,求函
admin
2019-04-05
108
问题
[2008年] 设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1.对任意t∈[0,+∞),由直线x=0,x=t,曲线y=f(x)以及z轴所围成的曲边梯形绕x轴旋转一周生成一旋转体.若该旋转体的侧面面积在数值上等于其体积的2倍,求函数f(x)的表达式.
选项
答案
先写出旋转体体积及其侧面积表示式,依题意建立f(x)所满足的方程,求导可得到f(x)满足的微分方程,解之即可得到f(x)的表达式. 旋转体的体积V=π∫
0
t
f
2
(x)dx,侧面面积为S=2π∫
0
1
f(x)[*], 由题设条件有 ∫
0
t
f
2
(x)dx=∫
0
t
f(x)[*]dx, 上式两边对t求导,得到 f
2
(t)=f(t)[*],即 y′=[*], 亦即[*]=dx. 两边积分得到ln(y+[*])=t+C.由y(0)=1得C=0,故y+[*]=e
t
, y=(e
t
+e
-t
)/2,于是所求函数为y=f(x)=(e
x
+e
-x
)/2.
解析
转载请注明原文地址:https://kaotiyun.com/show/yWV4777K
0
考研数学二
相关试题推荐
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。问k为何值时,f(x)在x=0处可导。
已知η1=[一3,2,0]T,η2=[一1,0,一2]T是线性方程组的两个解向量,试求方程组的通解,并确定参数a,b,c.
计算下列反常积分:
求曲线y=+ln(1+ex)的渐近线方程.
求二重积分,其中D={(x,y)|(x一1)2+(y—1)2≤2,y≥x}.
设f(χ)在区间[0,1]上连续,证明:∫01f(χ)dχ∫χ1f(y)dy=[∫01f(χ)dχ]2.
设区域D={(x,y)|x2+y2≤4,x≥0,y≥0}f(x)为D上的正值连续函数,a,b为常数,则=()
[2018年]x2[arctan(x+1)-arctanx]=___________.
[2012年]设an>0(n=1,2,3,…),Sn=a1+a2+a3+…+an,则数列{Sn}有界是数列{an}收敛的().
[2018年]已知曲线L:y=x2(x≥0),点0(0,0),点A(0,1).P是L上的动点,S是直线OA与直线AP及曲线L所围图形的面积.若P运动到点(3,4)时沿x轴正向的速度是4,求此时S关于时间t的变化率.
随机试题
从造字法来看,“瓜、册、面、肉”都属于_____造字法。
“垃圾邮件”是指批量发送的未征得收信人同意的电子邮件,下面有关垃圾邮件的描述中正确的是()。
A/叶酸B/维生素B6C/维生素B12D/维生素CE/维生素D可与钙剂合用用于防治佝偻病的维生素为
疳积与食积的主要区别是
既可解表又可除烦的药物是()。
首先提出普及教育的思想,并详细论证班级授课制的教育著作是()。
国际关系的一个基本事实是,当守成超级大国与崛起世界强国两大巨人相遇,其关系注定是极其_________而又非常_________的,二者之间的战略困境有可能因国际权力转移而加剧。填入划横线部分最恰当的一项是:
无论是竞争性厂商,还是垄断性厂商,只有在______时才扩大产出。()
设=_______.
Whichofthefollowingisthemostappropriatetitleforthepassage?Accordingtotheauthor,whichofthefollowingisNOTtr
最新回复
(
0
)