首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(x1,x2,…,xn)和(x1,x2,…,xn)是参数θ的两个独立的无偏估计量,且方差是方差的4倍.试求出常数k1与k2,使得k1+k2是θ的无偏估计量,且在所有这样的线性估计中方差最小.
设(x1,x2,…,xn)和(x1,x2,…,xn)是参数θ的两个独立的无偏估计量,且方差是方差的4倍.试求出常数k1与k2,使得k1+k2是θ的无偏估计量,且在所有这样的线性估计中方差最小.
admin
2016-11-03
67
问题
设
(x
1
,x
2
,…,x
n
)和
(x
1
,x
2
,…,x
n
)是参数θ的两个独立的无偏估计量,且
方差是
方差的4倍.试求出常数k
1
与k
2
,使得k
1
+k
2
是θ的无偏估计量,且在所有这样的线性估计中方差最小.
选项
答案
由无偏估计量的定义,为使k
1
[*]也是θ的无偏估计量,必有 E(k
1
[*])=(k
1
+k
2
)θ=θ,即得k
1
+k
2
=1. 为求k
1
,k
2
之值,使无偏估计量k
1
[*])之值最小,因 [*] 故归结为求函数f(k
1
,k
2
)=[*]在条件k
1
+k
2
=1下的最小值.可用拉格朗日乘数法求之.为此,令 F(k
1
,k
2
,λ)=[*]+λ(k
1
+k
2
—1), 令 [*]=8k
1
+λ=0, [*]=2k
2
+λ=0, [*]=k
1
+k
2
—1=—0, 易求得k
1
=[*] 即满足上述条件的所有线性估计中,当k
1
=[*]时,相应方差最小.
解析
由无偏估计量的定义易求出,在条件k
1
+k
2
=1时,可使k
1
也是θ的无偏估计量.然后用拉格朗日乘数法,求出线性估计中的最小方差D(k
1
)在条件k
1
+k
2
=1时的k
1
与k
2
之值.
转载请注明原文地址:https://kaotiyun.com/show/yXu4777K
0
考研数学一
相关试题推荐
[*]
设随机变量X的绝对值不大于1,P(X=1)=1/4,P(X=-1)=1/8,而在事件{-1
已知函数y=sinx的图形,作函数y=2sin﹙2x-π/2﹚的图形.
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y’(0)=3/2的解.
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
设随机变量X与Y相互独立,且分别服从参数为1与参数为4的指数分布,则P|x<y|=().
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记α=,β=若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22
在曲线z=t,y=-t2,z=t3的所有切线中,与平面x+2y+z=4平行的切线
微分方程y"-y’=ex+1的一个特解具有的形式为()。
随机试题
《雷雨》是一出()
如下_______成立,必使p∧q∧r为假。()
一种与生活愿望相结合并指向于未来的想象是( )。
下列穴位中,可治疗瘾疹、湿疹、丹毒等血热性皮外科病的穴位是
关于两组呈正态分布的数值变量资料,但均数相差悬殊,若比较离散趋势,最好选用下列哪项指标
按现行制度,现金日记账和银行存款日记账必须采用订本式账簿。()
培养德、智、体全面发展的社会主义事业的建设者和接班人的根本途径是()。
在教学中最常用的方法是
中断是CPU与外部设备数据交换的重要方式。CPU响应中断时必须具备3个条件,分别为外部提出中断请求,本中断未屏蔽,(4)。CPU响应中断后,必须由(5)提供地址信息,引导程序进入中断服务子程序;中断服务程序的入口地址存放在(6)中。
在VisualFoxPro中,"表"通常是指
最新回复
(
0
)