首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(x1,x2,…,xn)和(x1,x2,…,xn)是参数θ的两个独立的无偏估计量,且方差是方差的4倍.试求出常数k1与k2,使得k1+k2是θ的无偏估计量,且在所有这样的线性估计中方差最小.
设(x1,x2,…,xn)和(x1,x2,…,xn)是参数θ的两个独立的无偏估计量,且方差是方差的4倍.试求出常数k1与k2,使得k1+k2是θ的无偏估计量,且在所有这样的线性估计中方差最小.
admin
2016-11-03
60
问题
设
(x
1
,x
2
,…,x
n
)和
(x
1
,x
2
,…,x
n
)是参数θ的两个独立的无偏估计量,且
方差是
方差的4倍.试求出常数k
1
与k
2
,使得k
1
+k
2
是θ的无偏估计量,且在所有这样的线性估计中方差最小.
选项
答案
由无偏估计量的定义,为使k
1
[*]也是θ的无偏估计量,必有 E(k
1
[*])=(k
1
+k
2
)θ=θ,即得k
1
+k
2
=1. 为求k
1
,k
2
之值,使无偏估计量k
1
[*])之值最小,因 [*] 故归结为求函数f(k
1
,k
2
)=[*]在条件k
1
+k
2
=1下的最小值.可用拉格朗日乘数法求之.为此,令 F(k
1
,k
2
,λ)=[*]+λ(k
1
+k
2
—1), 令 [*]=8k
1
+λ=0, [*]=2k
2
+λ=0, [*]=k
1
+k
2
—1=—0, 易求得k
1
=[*] 即满足上述条件的所有线性估计中,当k
1
=[*]时,相应方差最小.
解析
由无偏估计量的定义易求出,在条件k
1
+k
2
=1时,可使k
1
也是θ的无偏估计量.然后用拉格朗日乘数法,求出线性估计中的最小方差D(k
1
)在条件k
1
+k
2
=1时的k
1
与k
2
之值.
转载请注明原文地址:https://kaotiyun.com/show/yXu4777K
0
考研数学一
相关试题推荐
[*]
设g(x)在点x=0连续,求f(x)=g(x)•sin2x在点x=0的导数.
设A是m×n矩阵,B是,n×m矩阵,则
在一通信渠道中,能传送字符AAAA,BBBB,CCCC三者之一,由于通信噪声干扰,正确接收到被传送字母的概率为0.6,而接收到其他两个字母的概率均为0.2,假设前后字母是否被歪曲互不影响.若收到字符为ABCA,问被传送字符为AAAA的概率是多大?
求点(2,1,0)到平面3x+4y+5z=0的距离.
设随机变量X和Y相互独立,X在区间(0,2)上服从均匀分布,y服从参数为1的指数分布,则概率P{X+Y>1}=().
某化肥厂生产某产品1000吨,每吨定价为130元,销售量在700吨以内时,按原价出售,超过700吨时,超过的部分打九折出售,试将销售总收益与总销售量的函数关系用数学表达式表出.
用区间表示满足下列不等式的所有x的集合:(1)|x|≤3(2)|x-2|≤1(3)|x-a|<ε(a为常数,ε>0)(4)|x|≥5(5)|x+1|>2
设二次型f(x1,x2,x3)=XTAX=ax12+222+(-232)+2bx32(b>0),其中二次矩阵A的特征值之和为1,特征值之积为-12.(Ⅰ)求a,b的值;(Ⅱ)利用正交变换将二次型f化为标准形,并写出所用的正交变换
=sin4x+cos4x,则y(n)=________(n≥1).
随机试题
“气凝胶”是一个不断发展的概念,早期提及气凝胶,更多强调它是一种由湿凝胶去除溶剂之后得到具有纳米孔的多孔材料。但是后来出现的新型气凝胶,有一部分并不满足纳米孔的特点,甚至还有的气凝胶是由气相法制备的。气凝胶最传统的制备方法是利用有机醇盐等前驱体的水解聚合反
柱形锪钻外圆上的切削刃为主切削刃,起主要切削作用。( )
不影响肺弥散量的因素是
类风湿关节炎除关节受损外还有关节外病变,主要是
患者,男,34岁,症见身热夜甚,心烦谵语,斑疹隐隐,口渴,舌绛少苔,脉细数者。治宜选用
甲为年满22周岁的青年工人,乙为年满15周岁的精神病人(限制行为能力人)。一日乙之父正与甲聊天,甲问乙是否敢拿一块石头砸丙,乙便捡起一块石头向丙扔去,将丙砸伤,对此乙之父未予阻止,花去医药费2000元。对此损失,应由:()
国家助学贷款首次还款日应不迟于毕业后()年。
下列关于政策性银行的说法错误的是()。
美国各门课程中多样化的实践活动,日本的综合活动时间反映出对_____在课程中地位的重视。【】
[*]
最新回复
(
0
)