首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α=(a1,a2,…,an)T,其中a1≠0,A=αT. (1)求方程组AX=0的通解; (2)求A的非零特征值及其对应的线性无关的特征向量.
设向量α=(a1,a2,…,an)T,其中a1≠0,A=αT. (1)求方程组AX=0的通解; (2)求A的非零特征值及其对应的线性无关的特征向量.
admin
2021-11-15
99
问题
设向量α=(a
1
,a
2
,…,a
n
)
T
,其中a
1
≠0,A=α
T
.
(1)求方程组AX=0的通解;
(2)求A的非零特征值及其对应的线性无关的特征向量.
选项
答案
因为r(A)=1,所以AX=0的基础解系含有n-1个线性无关的特征向量,其基础解系为 α
1
=(-a
2
/a
1
,1,0,…,0)
T
,α
2
=(-a
3
/a
1
,0,1,…,0)
T
,…,α
n-1
=(-a
n
/a
1
,0,0,…,1)
T
则方程组AX=0的通解为k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
(k
1
,k
2
,…,k
n-1
为任意常数). (2)因为A
2
=kA,其中k=(α,α)=[*]a
i
2
>0,所以A的非零特征值为k, 因为Aα=αα
T
α=kα,所以非零特征值k对应的线性无关的特征向量为α.
解析
转载请注明原文地址:https://kaotiyun.com/show/Cey4777K
0
考研数学二
相关试题推荐
设直线y=ax与抛物线y=x2所围成的图形面积为S1,它们与直线x=1所围成的图形面积为S2,且a<1.确定a,使S1+S2达到最小,并求出最小值。
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.设ξ1,ξ2,...,ξr与η1,η2,...,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,...,ξr,η1,η2,...,ηs线性无关。
设A是m×s阶矩阵,B为s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组。
设(I)a1,a2,a3,a4为四元非齐次线性方程组BX=b的四个解,其中,r(B)=2.求方程组(I)的基础解系。
设A是正交矩阵,且|A|<0,证明:|E+A|=0.
设A,B为两个n阶矩阵,下列结论正确的是()。
设a1,a2,...at为AX=0的一个基础解系,Β不是AX=0的解,证明:Β+Βa1,Β+a2,...Β+at线性无关。
设A为三阶实对称矩阵,a1=(a,-a,1)T是方程组AX=0的解,a2=(a,1,1-a)T是方程组(A+E)X=0的解,则a=______.
微分方程dy/dx=y/(x+y4)的通解是.
设Φ1(x),Φ2(x),Φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为()。
随机试题
关于足部按摩,下列选项中错误的是()。
________年,毛泽东等人听取了国务院多部门的工作汇报,经过深入调查研究,于5月份在最高国务会议上作了《论十大关系》的报告。()
本周蛋白阳性可见于的疾病,但除外
该病人的中医诊断是:该病的首选方药是:
下列有关历史文化名城的概念,理解不正确的是()。
从某一个系统的产生、运转、维护、消亡的生存发展进程上看,消防安全管理活动具有()的特征。如某一个厂房的生产系统,从计划、设计、制造、储存、运输、安装、使用、保养、维修直到报废消亡的整个过程中,都应该实施有效的消防安全管理活动。
下列项目中,不应记入“管理费用”科目的有()。
新民主主义的政治和经济,必须要有与之相适应的新民主主义文化。对新民主主义文化纲领的正确理解是()。
男性,65岁。阑尾穿孔切除术后8小时下腹部胀痛,躁动不安,未解小便。首先应想到的原因是
试述法律与道德的冲突。要求:观点明确,说理充分,条理清晰,语言规范、流畅。
最新回复
(
0
)