首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α=(a1,a2,…,an)T,其中a1≠0,A=αT. (1)求方程组AX=0的通解; (2)求A的非零特征值及其对应的线性无关的特征向量.
设向量α=(a1,a2,…,an)T,其中a1≠0,A=αT. (1)求方程组AX=0的通解; (2)求A的非零特征值及其对应的线性无关的特征向量.
admin
2021-11-15
38
问题
设向量α=(a
1
,a
2
,…,a
n
)
T
,其中a
1
≠0,A=α
T
.
(1)求方程组AX=0的通解;
(2)求A的非零特征值及其对应的线性无关的特征向量.
选项
答案
因为r(A)=1,所以AX=0的基础解系含有n-1个线性无关的特征向量,其基础解系为 α
1
=(-a
2
/a
1
,1,0,…,0)
T
,α
2
=(-a
3
/a
1
,0,1,…,0)
T
,…,α
n-1
=(-a
n
/a
1
,0,0,…,1)
T
则方程组AX=0的通解为k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
(k
1
,k
2
,…,k
n-1
为任意常数). (2)因为A
2
=kA,其中k=(α,α)=[*]a
i
2
>0,所以A的非零特征值为k, 因为Aα=αα
T
α=kα,所以非零特征值k对应的线性无关的特征向量为α.
解析
转载请注明原文地址:https://kaotiyun.com/show/Cey4777K
0
考研数学二
相关试题推荐
设直线y=ax与抛物线y=x2所围成的图形面积为S1,它们与直线x=1所围成的图形面积为S2,且a<1.求第一问中结论成立所对应的平面图形绕x轴旋转一周所得旋转体的体积。
设A是m×s阶矩阵,B为s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组。
设.求(I)(II)的基础解系。
设(I)a1,a2,a3,a4为四元非齐次线性方程组BX=b的四个解,其中,r(B)=2.求方程组(II)BX=0的基础解系。
设A是m×n矩阵,B是n×m矩阵,则()。
设有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
设二维非零向量a不是二阶方阵A的特征向量。若A2a+Aa-6a=0,求A的特征值,讨论A是否可对角化。
设矩阵为A*对应的特征向量。求a,b及a对应的A*的特征值。
设四阶矩阵A=(α1,α2,α3,α4),方程组Ax=B的通解为(1,2,2,1)T+c(1,﹣2,4,0)T,c为任意常数。记B=(α3,α2,α1,β-α4),求Bx=α1-α2的通解。
已知三阶矩阵A的三个特征值为1,2,3,则(A-1)*的特征值为_________.
随机试题
承包人应在合同工程完工证书颁发后()天内,向监理人提交完工付款申请单,并提供相关证明材料。
如果某一个计算程序的输入值只有一个,其范围是[-2.0,2.0],现从输入的角度考虑一组测试用例:-2.001,-2.0,0,2.001。设计这组测试用例的方法是()
TheColdPlacesTheArcticisapolarregion.Itsurrounds(环绕)theNorthPole.LikeAntarctica(南极洲),theArcticisalan
赵某,男,45岁,阵发性呼气性呼吸困难,烦躁不安,持续6小时,应用氨茶碱无效,痰黏。过去有哮喘病史。查体:满肺哮鸣音,可见肺气肿征。治疗应首选的药物是()
樱桃木墙面属于()。石膏板应裁制准确,安装牢固时隔墙端部的石膏板与周围的墙、柱应留有()的槽口。
某经销商采用GB/T2828.1对某类袋装食品进行抽样验收,规定N=150,检验水平为S-2,AQL-6.5(%)。放宽检验一次抽样方案为()。
SPC中主要工具是()。
A.greatmindsthinkalikeB.WecoulddoitfirstthingtomorrowmorningC.WestillhavetodoabouttenmoreNancy:Howmany
结合材料,回答问题:材料1纪念伟大的革命先行者孙中山先生!纪念他在中国民主革命准备时期,以鲜明的中国革命民主派立场,同中国改良派作了尖锐的斗争。他在这一场斗争中是中国革命民主派的旗帜。纪念他在辛亥革命时期,领导人民推翻帝
Isyourfamilyinterestedinbuyingadog?Adogcanbeahappy【B1】______toyourfamily,butifyouchoosethewrongkindofdog
最新回复
(
0
)