首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)=eχ-∫0χ(χ-t)f(t)dt,其中f(χ)连续,求f(χ).
设f(χ)=eχ-∫0χ(χ-t)f(t)dt,其中f(χ)连续,求f(χ).
admin
2020-03-16
45
问题
设f(χ)=e
χ
-∫
0
χ
(χ-t)f(t)dt,其中f(χ)连续,求f(χ).
选项
答案
由f(χ)=e
χ
-∫
0
χ
(χ-t)f(t)dt,得f(χ)=e
χ
-χ∫
0
χ
f(t)dt+∫
0
χ
tf(t)dt, 两边对χ求导,得f′(χ)=e
χ
-∫
0
χ
f(t)dt,两边再对χ求导得f〞(χ)+f(χ)=e
χ
, 其通解为f(χ)=C
1
cosχ+C
2
sinχ+[*]e
χ
.在f(χ)=e
χ
-∫
0
χ
(χ-t)f(t)dt中,令χ=0得 f(0)=1,在f′(χ)=e
χ
-∫
0
χ
f(t)dt中,令χ=0得f′(0)=1,于是有C
1
=[*],C
2
=[*], 故f(χ)=[*](cosχ+sinχ)+[*]e
χ
.
解析
转载请注明原文地址:https://kaotiyun.com/show/yb84777K
0
考研数学二
相关试题推荐
设n阶矩阵A的秩为1,试证:(1)A可以表示成n×1矩阵和1×n矩阵的乘积;(2)存在常数μ,使得Ak=μk一1A.
设f(x)=其中g(x)有二阶连续导数,且g(0)=1,g’(0)=一1,求f’(x),并讨论f’(x)在(一∞,+∞)内的连续性.
设α1,α2,…,αs,β都是n维向量,证明:r(α1,α2,…,αS,β)=
设z=f(x,y)是由x=eu+v,y=eu-v,z=uv所确定的函数,求
设A,B为n阶矩阵,P=证明:当P可逆时,Q也可逆.
设求满足Aξ2=ξ2,A2ξ3=ξ2的所有向量ξ2,ξ3;
已知A是三阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
计算不定积分
[2012年]计算二重积分xydσ,其中区域D为曲线r=1+cosθ(0≤θ≤π)与极轴围成.
[2018年]设平面区域D由曲线(0≤t≤2π)与x轴围成,计算二重积分(x+2y)dxdy.
随机试题
单位在银行开立的人民币结算账户分为()。
抑制胃酸分泌作用最强的药物是
糖尿病患者在家注射正规胰岛素,出现极度饥饿、软弱、手抖、出汗、头晕等,此时应当
某承包商与建设单位签订建造一栋办公楼的合同,合同规定办公大楼的总造价为6000万元,则该合同是()。
E公司只产销一种甲产品,甲产品只消耗乙材料。2015年第4季度按定期预算法编制2016年的企业预算。部分预算资料如下:资料一:乙材料2016年年初的预计结存量为2000千克,各季度末乙材料的预计结存量数据如表1所示:每季度乙材料的购货款于当季支付40
国家在必要时设立特别行政区,在特别行政区内实行的制度由()规定。
英国医生约翰斯诺的“污水理论”开启了流行病学研究的历史。1854年,伦敦爆发了大规模的霍乱,约翰斯诺发现,大多数死亡病例都曾经饮用同一水泵汲取的水,而使用其他水泵或水井的人最初都没有感染霍乱。后经调查,下水道的废水污染了那个水泵,从而引发了霍乱。以下哪一选
设α1,α2,α3线性无关,β1可由α1,α2,α3线性表示,β2不可由α1,α2,α3线性表示,对任意的常数k有().
[*]
HowOnlineDatingWorksOneofthebasichumanimpulsesistodeveloparomanticrelationship——andmaybeevenfallinlove.
最新回复
(
0
)