首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知两个向量组α1=(1,2,3)T,α2=(1,0,1)T与β1=(-1,2,t)T,β2=(4,1,5)T。 (Ⅰ)t为何值时,α1,α2与β1,β2等价; (Ⅱ)当两个向量组等价时,写出两个向量组之间的线性表示式。
已知两个向量组α1=(1,2,3)T,α2=(1,0,1)T与β1=(-1,2,t)T,β2=(4,1,5)T。 (Ⅰ)t为何值时,α1,α2与β1,β2等价; (Ⅱ)当两个向量组等价时,写出两个向量组之间的线性表示式。
admin
2017-11-30
27
问题
已知两个向量组α
1
=(1,2,3)
T
,α
2
=(1,0,1)
T
与β
1
=(-1,2,t)
T
,β
2
=(4,1,5)
T
。
(Ⅰ)t为何值时,α
1
,α
2
与β
1
,β
2
等价;
(Ⅱ)当两个向量组等价时,写出两个向量组之间的线性表示式。
选项
答案
(Ⅰ)对向量组α
1
,α
2
和β
1
,β
2
所构成的矩阵(α
1
,α
2
,β
1
,β
2
)进行初等行变换化为阶梯型矩阵。 [*] 因为α
1
,α
2
与β
1
,β
2
等价,所以,r(α
1
,α
2
)=r(β
1
,β
2
),所以t=1。 (Ⅱ)对矩阵(α
1
,α
2
,β
1
,β
2
)进行初等行变换化为行最简形, [*] 所以β
1
=α
1
-2α
2
,β
2
=[*]。 对矩阵(β
1
,β
2
,α
1
,α
2
)进行初等行变换化为行最简形, [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/yfr4777K
0
考研数学一
相关试题推荐
已知f(x)的一个原函数为(1+sinx)lnx,求∫xf’(x)dx.
求不定积分
在区间[0,8]内,对函数,罗尔定理()
设函数u(x,y),v(x,y)在D:x2+y2≤1上一阶连续可偏导,又
λ为何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
设A是5×4矩阵,B是四阶矩阵,满足2AB=A,B*是B的伴随矩阵,若A的列向量线性无关,则秩r(B*)=()。
若二次型f(x1,x2,x3)=+2ax1x2+2x1x3+2bx2x3经正交变换x=Qy化为标准形,则a2+b2=_______.
某闸门的形状与大小如右图所示,其中直线l为对称轴,闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成,当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的压力之比为5:4,闸门矩形部分的高^应为多少m(米)?
从一批轴料中取15件测量其椭圆度,计算得S=0.025,问该批轴料椭圆度的总体方差与规定的σ2=0.0004有无显著差别?(a=0.05,椭圆度服从正态分布)
利用格林公式计算∫L(exsiny+x—y)dx+(excosy+y)dy,其中L是圆周y=(a>0)上从点A(2a,0)到点O(0,0)的弧段.
随机试题
甲亢危象最常见的诱发因素为
下列关于本票和支票的说法正确的是()。
甲是某市公路管理局局长,某建筑承包商夏某找到甲的情妇乙,请乙在承包某路段的工程上帮忙,并表示可以按照工程款的5%共100万元提成给乙,乙满口答应。乙求甲设法把工程给夏某,甲看在乙的面子上,利用其职权令负责此项目的工作人员丙违反规定,帮助夏某承揽到该路段工程
法院审理行政案件,对下列哪些事项,《行政诉讼法》没有规定的,适用《民事诉讼法》的相关规定?
施工企业从银行贷款,下列可作为质押担保的有()。
下列关于生产安全事故报告的表述不符合规定的是()。
根据以下资料,回答以下题。根据上图,原材料上涨速度最快的年份是()
记忆的SPI理论试图将记忆系统和记忆过程统一到一个更综合的框架中,它是由()提出来的。
Let’skeepthefish______.
A、Becausetheylackself-disciplineintheirstudies.B、BecausetheyspendtoomuchtimeontheInternet.C、Becausetheyhaveno
最新回复
(
0
)