首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上二阶可导,且f′(a)=f′(b)=0.证明:存在ξE(a,b),使得 |f″(ξ)|≥4/(b-a)2|f(b)-f(a)|.
设f(x)在[a,b]上二阶可导,且f′(a)=f′(b)=0.证明:存在ξE(a,b),使得 |f″(ξ)|≥4/(b-a)2|f(b)-f(a)|.
admin
2022-08-19
55
问题
设f(x)在[a,b]上二阶可导,且f′(a)=f′(b)=0.证明:存在ξE(a,b),使得
|f″(ξ)|≥4/(b-a)
2
|f(b)-f(a)|.
选项
答案
由泰勒公式得 f[(a+b)/2]=f(a)+f′(a)[(a+b)/2-a]+[f″(ξ
1
)/2!][(a+b)/2-a]
2
,ξ
1
∈[a,(a+b)/2], f[(a+b)/2]=f(b)+f′(b)[(a+b)/2-b]+[f″(ξ
2
)/2!][(a+b)/2-b]
2
,ξ
2
∈[(a+b)/2,b], 即f[(a+b)/2]=f(a)+[(b-a)
2
/8]f″(ξ
1
),f[(a+b)/2]=f(b)+[(b-a)
2
/8]f″(ξ
2
), 两式相减得f(b)-f(a)=[(b-a)
2
/8][f″(ξ
1
)-f″(ξ
2
)], 取绝对值得|f(b)-f(a)|≤[(b-a)
2
/8][|f″(ξ
1
)|+|f″(ξ
2
)|]. (1)当|f″(ξ
1
)|≥|f″(ξ
2
)|时,取ξ=ξ
1
,则有|f″(ξ)|≥[4/(b-a)
2
]|f(b)-f(a)|; (2)当|f″(ξ
1
)|<|f″(ξ
2
)|时,取ξ=ξ
2
,则有|f″(ξ)|≥[4/(b-a)
2
]|f(b)-f(a)|.
解析
转载请注明原文地址:https://kaotiyun.com/show/yjR4777K
0
考研数学三
相关试题推荐
=_______.
=________.
过曲线y=x2(x≥0)上某点作切线,使该曲线、切线与x轴所围成图形的面积为,求切点坐标、切线方程,并求此图形绕z轴旋转一周所成立体的体积.
有甲、乙两个口袋,两袋中都有3个白球2个黑球,现从甲袋中任取一球放人乙袋,再从乙袋中任取4个球,设4个球中的黑球数用X表示,求X的分布律.
设f(x)在(-∞,+∞)内一阶连续可导,且=1.证明:(-1)nf()收敛,而f()发散.
设F(x)为f(x)的原函数,且当x≥0时,f(x)F(x)=,又F(0)=1,F(x)>0,求f(x).
下列说法中正确的是().
按要求求下列一阶差分方程的通解或特解.求yx+1-2yx=2x的通解;
设f(x)具有一阶连续导数,f(0)=0,且表达式[xy(1+y)一f(x)y]dx+[f(x)+x2y]dy为某二元函数u(x,y)的全微分.(1)求f(x);(2)求u(x,y)的一般表达式.
函数y=lnx在区间[1,e]上的平均值为_________.
随机试题
根据《法律援助条例》规定,请求支付劳动报酬的,向()的法律援助机构提出申请。
治疗湿热黄疽可选用
痢疾初起治疗当忌
肢端肥大症患者血钙较高时常提示
实验室测定血清总钙的参考方法是
下列关于磁共振图像矩阵的叙述,正确的是
某公司去年有员工830人,今年男员工人数比去年减少6%,女员工人数比去年增加5%,员工总数比去年增加3人,问今年男员工有多少人?()
下面是某求助者MMPI-2的测验结果24项版本的HAMD量表,其因子数量为()。(A)2(B)3(C)5(D)7
案例:某学校初二年级的数学备课组针对“勾股定理”一课的教学进行讨论,拟定了如下的教学目标:①掌握勾股定理的内容,体会数形结合思想;②学会运用勾股定理。为了落实上述教学目标,甲、乙两位教师对此给出了不同的教学思路。
纯粹从阅读角度看,今天我们的阅读数量是很可观的。我们每天看微博,看新闻客户端,看微信朋友圈,看QQ日志……这最终都能累积为每天的阅读量。碎片化的阅读,确实便利了信息获取,但若是从人文涵养的角度看,碎片化本身意味着不全面,再加上网络阅读的简化,人们由此实现的
最新回复
(
0
)