首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(一∞,+∞)内连续,且F(x)=r(2t一x)f(t)dt,证明: (Ⅰ)若f(x)是偶函数,则F(x)也是偶函数。 (Ⅱ)若f(x)是单调减函数,则F(x)也是单调减函数。
设函数f(x)在(一∞,+∞)内连续,且F(x)=r(2t一x)f(t)dt,证明: (Ⅰ)若f(x)是偶函数,则F(x)也是偶函数。 (Ⅱ)若f(x)是单调减函数,则F(x)也是单调减函数。
admin
2018-05-25
99
问题
设函数f(x)在(一∞,+∞)内连续,且F(x)=r(2t一x)f(t)dt,证明:
(Ⅰ)若f(x)是偶函数,则F(x)也是偶函数。
(Ⅱ)若f(x)是单调减函数,则F(x)也是单调减函数。
选项
答案
(Ⅰ)F(一x)=∫
0
-x
(2t+x)f(t)dt[*]一∫
0
x
(一2u+x)f(一u)du, 若f(x)是偶函数,则有f(一x)=f(x)。故 上式=∫
0
x
(2u一x)f(u)du=F(x), 即F(x)也是偶函数。 (Ⅱ)欲证F(x)是单调减函数,则需证F’(x)<0或F’(x)≤0且等号仅在某些点成立。 由已知 F(x)=2∫
0
x
tf(t)dt一x∫
0
x
f(t)dt, 则 F’(x)=2xf(x)一∫
0
x
f(t)dt—xf(x)=xf(x)一∫
0
x
f(t)dt =∫
0
x
f(x)dt—∫
0
x
f(t)dt=∫
0
x
[f(x)一f(t)]dx。 因f(x)是单调减函数,t介于0与x之间,所以当x>0时,f(x)一f(t)<0,故F’(x)<0;当 x<0时,f(x)一f(t)>0,故F’(x)<0;当x=0时,F’(0)=0。 即x∈(一∞,+∞)时,F’(x)≤0且符号仅在x=0时成立,因此F(x)也是单调减函数。
解析
转载请注明原文地址:https://kaotiyun.com/show/ymg4777K
0
考研数学一
相关试题推荐
设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为()
设有矩阵Am×n,Bn×m,已知Em一AB可逆,证明:En一BA可逆,且(En一BA)—1=Em×n+B(Em一AB)—1A.
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应齐次线性方程组AX=0的基础解系,k1,k2为任意常数,则方程组AX=b的通解(一般解)是
求极限
已知函数f(x)在(0,+∞)上可导,f(x)>0,,求f(x).
曲线的渐近线有
设函数f(x)=ax(a>0,a≠1),则=_____________.
yOz平面上的曲线绕z轴旋转一周与平面z=1,z=4围成一旋转体Ω,设该物体的点密度μ=r2,其中r为该点至旋转轴的距离,求该物体的质心的坐标.
直线在yOz平面上的投影直线l绕Oz轴旋转一周生成的旋转曲面的方程为________.
分段函数一定不是初等函数,若正确,试证之;若不正确,试说明它们之间的关系?
随机试题
A.肌纤维退变、坏死与再生并存B.在受累肌纤维的肌浆中央区出现一核心,PAS染色阳性C.成群的萎缩纤维,肌纤维可完全破坏D.炎性、退行性变、再生三者的结合E.纤维细胞增生活跃,骨样组织和部分钙化的骨小梁急性多发性肌炎
心的生理功能有()。
根据《住宅装饰装修工程施工规范》的规定,施工现场用电应符合的规定有()。
2014年4月,甲企业发生如下业务:(1)甲企业开出一张付款期限为3个月的汇票给乙企业,丙企业在该汇票的正面记载了保证事项,乙企业取得汇票后,将该汇票背书转让给了丁企业。(2)甲企业采用汇兑的方式结算前欠戊公司的货款。要求:根
社会行为公式B=f(P,E)中,E的含义是()。
下列哪些做法不符合《公务员法》的规定?()
公安机关和广大群众结合得好不好,责任在()方面。
下列各句中,没有语病且句意明确的一句是()。
某市要强制执行带薪休假制度,此举在企业和百姓间引发热议。对此。你怎么看?
推动经济持续健康发展的主线是
最新回复
(
0
)