首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(一∞,+∞)内连续,且F(x)=r(2t一x)f(t)dt,证明: (Ⅰ)若f(x)是偶函数,则F(x)也是偶函数。 (Ⅱ)若f(x)是单调减函数,则F(x)也是单调减函数。
设函数f(x)在(一∞,+∞)内连续,且F(x)=r(2t一x)f(t)dt,证明: (Ⅰ)若f(x)是偶函数,则F(x)也是偶函数。 (Ⅱ)若f(x)是单调减函数,则F(x)也是单调减函数。
admin
2018-05-25
67
问题
设函数f(x)在(一∞,+∞)内连续,且F(x)=r(2t一x)f(t)dt,证明:
(Ⅰ)若f(x)是偶函数,则F(x)也是偶函数。
(Ⅱ)若f(x)是单调减函数,则F(x)也是单调减函数。
选项
答案
(Ⅰ)F(一x)=∫
0
-x
(2t+x)f(t)dt[*]一∫
0
x
(一2u+x)f(一u)du, 若f(x)是偶函数,则有f(一x)=f(x)。故 上式=∫
0
x
(2u一x)f(u)du=F(x), 即F(x)也是偶函数。 (Ⅱ)欲证F(x)是单调减函数,则需证F’(x)<0或F’(x)≤0且等号仅在某些点成立。 由已知 F(x)=2∫
0
x
tf(t)dt一x∫
0
x
f(t)dt, 则 F’(x)=2xf(x)一∫
0
x
f(t)dt—xf(x)=xf(x)一∫
0
x
f(t)dt =∫
0
x
f(x)dt—∫
0
x
f(t)dt=∫
0
x
[f(x)一f(t)]dx。 因f(x)是单调减函数,t介于0与x之间,所以当x>0时,f(x)一f(t)<0,故F’(x)<0;当 x<0时,f(x)一f(t)>0,故F’(x)<0;当x=0时,F’(0)=0。 即x∈(一∞,+∞)时,F’(x)≤0且符号仅在x=0时成立,因此F(x)也是单调减函数。
解析
转载请注明原文地址:https://kaotiyun.com/show/ymg4777K
0
考研数学一
相关试题推荐
设A*是A3×3的伴随矩阵,|A|=,求行列式|(3A)—1一2A*|的值.
设以元线性方程组Ax=b,其中(I)证明行列式|A|=(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求x1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+2f(1)+3f(2)=6,f(3)=1,试证:必存在ξ∈(0,3),使f’(ξ)=0.
求极限
计算.其中∑是由曲线x=ey(0≤y≤a)绕x轴旋转而成的旋转面外侧.
求曲线积分的值,其中L为(x一a)2+(y一b)2=1的正向.
计算,其中D由直线x=一2,y=0,y=2以及曲线所围成.
试求极限(a>1)
yOz平面上的曲线绕z轴旋转一周与平面z=1,z=4围成一旋转体Ω,设该物体的点密度μ=r2,其中r为该点至旋转轴的距离,求该物体的质心的坐标.
随机试题
大量腹腔积液的体征不包括()
A.激活弹力纤维酶B.激活磷脂酶AC.激活胰舒血管素D.激活胰蛋白酶E.激活血浆激肽引起胰腺坏死是因首先
女性,32岁,突眼,颈粗,怕热8个月,未经诊治过。诊断:甲状腺功能亢进症,可能发现下述症状及体征,但除外
患者,男,50岁。外伤性肠穿孔修补术后3天,肠蠕动未恢复,腹胀明显,目前最主要的护理措施是
海水侵蚀作用的动力,包括()等三个方面。
同一长度的压杆,截面积及材料均相同,仅两端支承条件不同,则( )杆的临界力最小。
《会计法》规定,我国会计年度自()。
教师职业角色意识的形成过程包括:___________、角色认同阶段、角色信念阶段。
A、 B、 C、 D、 A
SomeTheoriesofHistoryI.TheproblemsofunderstandinghistoryHistorywithwrittenrecords:therecordsmaybe【B1】_____
最新回复
(
0
)