首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(一∞,+∞)内连续,且F(x)=r(2t一x)f(t)dt,证明: (Ⅰ)若f(x)是偶函数,则F(x)也是偶函数。 (Ⅱ)若f(x)是单调减函数,则F(x)也是单调减函数。
设函数f(x)在(一∞,+∞)内连续,且F(x)=r(2t一x)f(t)dt,证明: (Ⅰ)若f(x)是偶函数,则F(x)也是偶函数。 (Ⅱ)若f(x)是单调减函数,则F(x)也是单调减函数。
admin
2018-05-25
48
问题
设函数f(x)在(一∞,+∞)内连续,且F(x)=r(2t一x)f(t)dt,证明:
(Ⅰ)若f(x)是偶函数,则F(x)也是偶函数。
(Ⅱ)若f(x)是单调减函数,则F(x)也是单调减函数。
选项
答案
(Ⅰ)F(一x)=∫
0
-x
(2t+x)f(t)dt[*]一∫
0
x
(一2u+x)f(一u)du, 若f(x)是偶函数,则有f(一x)=f(x)。故 上式=∫
0
x
(2u一x)f(u)du=F(x), 即F(x)也是偶函数。 (Ⅱ)欲证F(x)是单调减函数,则需证F’(x)<0或F’(x)≤0且等号仅在某些点成立。 由已知 F(x)=2∫
0
x
tf(t)dt一x∫
0
x
f(t)dt, 则 F’(x)=2xf(x)一∫
0
x
f(t)dt—xf(x)=xf(x)一∫
0
x
f(t)dt =∫
0
x
f(x)dt—∫
0
x
f(t)dt=∫
0
x
[f(x)一f(t)]dx。 因f(x)是单调减函数,t介于0与x之间,所以当x>0时,f(x)一f(t)<0,故F’(x)<0;当 x<0时,f(x)一f(t)>0,故F’(x)<0;当x=0时,F’(0)=0。 即x∈(一∞,+∞)时,F’(x)≤0且符号仅在x=0时成立,因此F(x)也是单调减函数。
解析
转载请注明原文地址:https://kaotiyun.com/show/ymg4777K
0
考研数学一
相关试题推荐
设三阶方阵A、B满足A2B—A—B=E,其中E为三阶单位矩阵,若A=,则行列式|B|=________.
设(I)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(I)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设总体X的概率密度为其中θ为未知参数且大于零,X1,X2,…,Xn为来自总体X的简单随机样本.求θ的最大似然估计量.
设f(x)在[0,1]上有二阶连续导数,且f(0)=f(1)=0,,证明
求极限
设随机变量且X与Y的相关系数为则P{X=Y)=________.
设f(x,y)在平面区域D={(x,y)|x2+y2≤1}上有二阶连续偏导数,且l为D的边界正向一周.
设D是由曲线y=x3与直线所围成的有界闭区域,则
设f(χ,y)在全平面有连续偏导数,曲线积分∫Lf(χ,y)dχ+χcosydy在全平面与路径无关,且f(χ,y)dχ+χcosydy=t2,求f(χ,y).
设平面上连续曲线y=f(χ)(a≤χ≤b,f(χ)>0)和直线χ=a,χ=b及χ轴所围成的图形绕χ轴旋转一周所得旋转体的质心是(,0,0),则的定积分表达式是_______.
随机试题
一位化学教师在讲解原子时,说:“假设全中国人都来数某一元素(如硫元素)的一摩尔的原子数,如果每人都以每秒数一个原子的速度连续不断地数,那么,要全部数完这些原子约需要200万年。”这一描述反映了()教学原则。
下列关于外汇储备的说法不正确的是()。
心源性水肿
A.肝B.脾C.小肠D.结肠腹部最易损伤的空腔脏器是
A.弱视B.低视力C.屈光不正D.伪弱视E.盲人如果一位白内障患者的最好矫正视力是:右眼光感,左眼0.2。该患者属于
骨髓腔或骨孔内的出血可用
下列除哪项外,均为胃阴不足型呕吐的主症()
(2008年考试真题)有价证券按照上市与否可分为上市证券和非上市证券,非上市证券就是指不符合证券交易所上市条件而不能上市的证券。()
图3表示某绿色植物的叶肉细胞在其他条件不变且比较适宜时,分别在光照强度为a、b、c、d时,单位时间内CO2释放量和O2产生量的变化。下列叙述错误的是()。
已知x∈R,若(1—2x)2005=a0+a1x+a2x2+…+a2005x2005,则(a0+a1)+(a0+a2)+…+(a0+a2005)=[].
最新回复
(
0
)