首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是4×5矩阵,ξ1=[1,一1,1,0.0]T,ξ2=[一1,3,一1,2,0]T,ξ3=[2,1,2,3,0]T,ξ4=[1,0,一1,1,一2]T,ξ5=[-2,4,3,2,5]T都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ1,ξ
设A是4×5矩阵,ξ1=[1,一1,1,0.0]T,ξ2=[一1,3,一1,2,0]T,ξ3=[2,1,2,3,0]T,ξ4=[1,0,一1,1,一2]T,ξ5=[-2,4,3,2,5]T都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ1,ξ
admin
2022-01-17
47
问题
设A是4×5矩阵,ξ
1
=[1,一1,1,0.0]
T
,ξ
2
=[一1,3,一1,2,0]
T
,ξ
3
=[2,1,2,3,0]
T
,ξ
4
=[1,0,一1,1,一2]
T
,ξ
5
=[-2,4,3,2,5]
T
都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ
1
,ξ
2
,ξ
3
,ξ
4
,ξ
5
线性表出,若k
1
,k
2
,k
3
,k
4
,k
5
是任意常数,则Ax=0的通解是( )
选项
A、k
1
ξ
1
+k
2
ξ
2
+k
3
ξ
3
+k
4
ξ
4
+k
5
ξ
5
.
B、k
1
ξ
1
+k
2
ξ
2
+k
3
ξ
3
.
C、k
2
ξ
2
+k
3
ξ
3
+k
4
ξ
4
.
D、k
1
ξ
1
+k
3
ξ
3
+k
5
ξ
5
.
答案
D
解析
Ax=0的任一解向量均可由ξ
1
,ξ
2
,ξ
3
,ξ
4
,ξ
5
线性表出,则必可由ξ
1
,ξ
2
,ξ
3
,ξ
4
,ξ
5
的极大线性无关组表出,且ξ
1
,ξ
2
,ξ
3
,ξ
4
,ξ
5
的极大线性无关组即是Ax=0的基础解系.因
故知ξ
1
,ξ
3
,ξ
5
线性无关,是极大无关组,是Ax=0的通解,故应选D.
转载请注明原文地址:https://kaotiyun.com/show/yof4777K
0
考研数学二
相关试题推荐
设则B-1为().
设函数u=u(x,y)满足及u(x,2x)=x,u’1(x,2x)=x2,u有二阶连续偏导数,则u11(x,2x)=()
曲线y=(常数a≠0)(一∞<x<+∞)
设函数f(x)对任意的x均满足等式f(1+x)=af(x),且有f’(0)=b,其中a,b为非零常数,则()
关于二次型f(x1,x2,x3)=x12+x22+x32+2x1x2+2x1x3+2x2x3,下列说法正确的是()
累次积分可以写成()
设y=y(x)是二阶线性常系数微分方程y’’+Py’+qy=e3x满足初始条件y(0)=y’(0)=0的特解,则当x→0时,函数的极限()
设矩阵A=,且∣A∣=一l,又设A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=[一1,一1,1]T.求a,b,c和λ0的值.
3x+y+6=0
设f(u)为u的连续函数,并设f(0)=a>0.又设平面区域σ1={(x,y)||x|﹢|y|≤t,t≥0},Ф(t)=f(x2﹢y2dxdy.则Ф(t)在t=0处的右导数Ф’﹢﹢(0)=()
随机试题
下列有关风湿病发病的描述,哪项是恰当的
测量不确定度表述的是测量值之间的()。
新增宗地的宗地草图应当按()的规定绘制。
根据解释主体的不同,正式解释分为()。
人眼的“白眼球”和“黑眼球”实际上是指()。
策略性知识是对外调控的技能,其习得和应用离不开元认知监控。()
下列哪个图有别于其他三个图?()
在Windows 98环境下,用户可以通过控制面板中的“添加/删除程序”来创建启动盘(软盘)。在Windows 98默认安装的情况下,启动盘上的文件主要来源于C:\ Windows文件夹下的哪个文件夹?( )
最简单的交换排序方法是()。
Theideaofafishbeingabletogenerateelectricitystrongenoughtolightlampbulbs—oreventorunasmallelectricmotor—is
最新回复
(
0
)