首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是4×5矩阵,ξ1=[1,一1,1,0.0]T,ξ2=[一1,3,一1,2,0]T,ξ3=[2,1,2,3,0]T,ξ4=[1,0,一1,1,一2]T,ξ5=[-2,4,3,2,5]T都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ1,ξ
设A是4×5矩阵,ξ1=[1,一1,1,0.0]T,ξ2=[一1,3,一1,2,0]T,ξ3=[2,1,2,3,0]T,ξ4=[1,0,一1,1,一2]T,ξ5=[-2,4,3,2,5]T都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ1,ξ
admin
2022-01-17
54
问题
设A是4×5矩阵,ξ
1
=[1,一1,1,0.0]
T
,ξ
2
=[一1,3,一1,2,0]
T
,ξ
3
=[2,1,2,3,0]
T
,ξ
4
=[1,0,一1,1,一2]
T
,ξ
5
=[-2,4,3,2,5]
T
都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ
1
,ξ
2
,ξ
3
,ξ
4
,ξ
5
线性表出,若k
1
,k
2
,k
3
,k
4
,k
5
是任意常数,则Ax=0的通解是( )
选项
A、k
1
ξ
1
+k
2
ξ
2
+k
3
ξ
3
+k
4
ξ
4
+k
5
ξ
5
.
B、k
1
ξ
1
+k
2
ξ
2
+k
3
ξ
3
.
C、k
2
ξ
2
+k
3
ξ
3
+k
4
ξ
4
.
D、k
1
ξ
1
+k
3
ξ
3
+k
5
ξ
5
.
答案
D
解析
Ax=0的任一解向量均可由ξ
1
,ξ
2
,ξ
3
,ξ
4
,ξ
5
线性表出,则必可由ξ
1
,ξ
2
,ξ
3
,ξ
4
,ξ
5
的极大线性无关组表出,且ξ
1
,ξ
2
,ξ
3
,ξ
4
,ξ
5
的极大线性无关组即是Ax=0的基础解系.因
故知ξ
1
,ξ
3
,ξ
5
线性无关,是极大无关组,是Ax=0的通解,故应选D.
转载请注明原文地址:https://kaotiyun.com/show/yof4777K
0
考研数学二
相关试题推荐
设随机变量X与Y相互独立,且X~N(0,1),Y具有分布律P(Y=0)=P(Y=1)=1/2,记FZ(z)为随机变量Z=XY的分布函数,则函数FZ(z)的间断点个数为().
设函数f(x)满足等式∫0π[f(x)+f”(x)]sinxdx=5,且f(0)=2,则f(π)等于()
比较下列积分值的大小:Ji=e-(x2+y2)dxdy,i=1,2,3,其中D1={x,y)|x2+y2≤R2},D2={(x,y)|x2+y2≤2R2},D3={(x,y)||x|≤R,|y|≤R}.则J1,J2,J3之间的大小顺序为
设z=f(x,y)在点(x0,y0)处可微,△z是f(x,y)在点(x0,y0)处的全增量,则在点(x0,y0)处()
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y’’+p(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是()
设函数y=f(x)可微,且曲线y=f(x)在点(x0,f(x0))处的切线与直线y=2-x垂直,则=
抛物线y2=ax(a>0)与x=1所围面积为,则a=_______.
设f(χ),g(χ)在[a,b]上连续,在(a,b)内可导,且g′(χ)≠0.证明:存在ξ∈(a,b),使得
设f(x)在(a,b)四次可导,x0∈(a,b)使得f"(x0)=f"’(x0)=0,又设f(4)(x)>0(x∈(a,b)),求证f(x)在(a,b)为凹函数.
3x+y+6=0
随机试题
关于肺结核处于稳定期的描述下列哪项是不正确的
患者喘逆剐甚,张口抬肩,鼻翼煽张,呼吸困难,不能平卧,心悸,烦躁不安,面唇青紫,汗出肢冷,脉浮大无根。治宜
男,48岁,反酸、烧心5个月。胃镜检查:反流性食管炎伴溃疡形成。最佳的治疗药物是
乳腺癌好发于
主要用于预防Ⅰ型变态反应所致哮喘的药物是( )。
已知沿海某建设项目废气中SO2的等标排放量是3.0×109,则该项目大气的评价等级为()。
在影响消费者行为的因素中,属于个人因素的有()。
保证幼儿每天睡(),其中午睡一般应达到2小时左右。午睡时间可根据幼儿年龄、季节的变化和个体差异适当减少。
眼过千遍不如手过一遍,是贯彻()原则的体现。
市场失灵的主要表现有()。
最新回复
(
0
)