首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是4×5矩阵,ξ1=[1,一1,1,0.0]T,ξ2=[一1,3,一1,2,0]T,ξ3=[2,1,2,3,0]T,ξ4=[1,0,一1,1,一2]T,ξ5=[-2,4,3,2,5]T都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ1,ξ
设A是4×5矩阵,ξ1=[1,一1,1,0.0]T,ξ2=[一1,3,一1,2,0]T,ξ3=[2,1,2,3,0]T,ξ4=[1,0,一1,1,一2]T,ξ5=[-2,4,3,2,5]T都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ1,ξ
admin
2022-01-17
61
问题
设A是4×5矩阵,ξ
1
=[1,一1,1,0.0]
T
,ξ
2
=[一1,3,一1,2,0]
T
,ξ
3
=[2,1,2,3,0]
T
,ξ
4
=[1,0,一1,1,一2]
T
,ξ
5
=[-2,4,3,2,5]
T
都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ
1
,ξ
2
,ξ
3
,ξ
4
,ξ
5
线性表出,若k
1
,k
2
,k
3
,k
4
,k
5
是任意常数,则Ax=0的通解是( )
选项
A、k
1
ξ
1
+k
2
ξ
2
+k
3
ξ
3
+k
4
ξ
4
+k
5
ξ
5
.
B、k
1
ξ
1
+k
2
ξ
2
+k
3
ξ
3
.
C、k
2
ξ
2
+k
3
ξ
3
+k
4
ξ
4
.
D、k
1
ξ
1
+k
3
ξ
3
+k
5
ξ
5
.
答案
D
解析
Ax=0的任一解向量均可由ξ
1
,ξ
2
,ξ
3
,ξ
4
,ξ
5
线性表出,则必可由ξ
1
,ξ
2
,ξ
3
,ξ
4
,ξ
5
的极大线性无关组表出,且ξ
1
,ξ
2
,ξ
3
,ξ
4
,ξ
5
的极大线性无关组即是Ax=0的基础解系.因
故知ξ
1
,ξ
3
,ξ
5
线性无关,是极大无关组,是Ax=0的通解,故应选D.
转载请注明原文地址:https://kaotiyun.com/show/yof4777K
0
考研数学二
相关试题推荐
设u(x,y)在平面有界闭区域D上具有二阶连续偏导数,且则u(x,y)的()
设A为n阶方阵,且A+E与A—E均可逆,则下列等式中不成立的是()
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是()
设{an},{bn},{cn}均为非负数列,且,则必有()
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是()
设f(x)在x=0处二阶可导f(0)=0且=2,则().
设f(x)是以2为周期的连续函数,则()
函数f(x)=(x2+x一2)|sin2πx|在区间上不可导点的个数是()
已知β1,β2是AX=b的两个不同的解,α1,α2是相应的齐次方程组AX=0的基础解系,k1,k2是任意常数,则AX=b的通解是()
设f(χ),g(χ)是连续函数,当χ→0时,f(χ)与g(χ)是等价无穷小,令F(χ)=∫0χf(χ-t)dt,G(χ)=∫χgχg(χt)dt,则当χ→0时,F(χ)是G(χ)的().
随机试题
实践是认识的来源表明()
眶上裂的组成为
患者,男性,18岁,10天前出现上呼吸道感染,近一天来出现尿液呈洗肉水样。查体:血压140/90mmHg,双侧眼睑水肿。该病的病因与下列哪项有关
以下四个城市中()城市,人们经常称其“七溪流水皆通海,十里青山半人城”,被称为“琴城”。
在卫星通信系统中,负责收集卫星上设备工作的数据,如电流、电压、温度、传感器信息、气体压力指令证实等信号的是()。
根据以下资料。回答下列问题。2009年7月,全国粗钢产量同比增长12.6%,增速比上月提高6.6个百分点;钢材产量同比增长19.4%,增速比上月提高5.4个百分点;焦炭产量同比增长6.3%;铁合金产量同比增长15.1%。钢材出口181万吨,比上月
《尚书·康诰》:“人有小罪。非眚,乃惟终……有厥罪小,乃不可不杀。”非眚是指()。(2018单33)
小张承诺:如果天不下雨,我一定去听音乐会。以下哪项为真。说明小张没有兑现承诺?I.天没下雨,小张没去听音乐会。Ⅱ.天下雨,小张去听了音乐会。Ⅲ.天下雨,小张没去听音乐会。
分布式数据的形式多样化,下列()形式有同步设计的问题。Ⅰ.子集数据Ⅱ.复制数据Ⅲ.划分数Ⅳ.独立模式数据Ⅴ.重组数据
以下关于计算机网络的基本特征的叙述中,哪一条是不正确的?
最新回复
(
0
)