首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵矩阵B=(kE+A)2,其中k为实数,E为单位矩阵,求对角矩阵A,使B与A相似,并求尼为何值时,B为正定矩阵?
设矩阵矩阵B=(kE+A)2,其中k为实数,E为单位矩阵,求对角矩阵A,使B与A相似,并求尼为何值时,B为正定矩阵?
admin
2019-05-08
35
问题
设矩阵
矩阵B=(kE+A)
2
,其中k为实数,E为单位矩阵,求对角矩阵A,使B与A相似,并求尼为何值时,B为正定矩阵?
选项
答案
解一 由|λE-A|
2
=λ(λ-2)
2
=0得到A的特征值λ
1
=λ
2
=2,λ
3
=0,且kE+A的 特征值为k+2(二重)和k,进而得到B的特征值为(k+2)
2
(二重)和k
2
.因A为实对称矩阵,kE+A也为实对称矩阵,故B=(kE+A)
2
也为实对称矩阵.利用实对称矩阵必可相似对角化得到B必与对角矩阵相似,且相似对角矩阵Λ =diag((k+2)
2
,(k+2)
2
,k
2
),于是有B~Λ . 当k≠一2且k≠0时,B的全部特征值均为正数,这时B必为正定矩阵. 解二 A为实对称矩阵,必可相似对角化,又A的特征值为λ
1
=λ
2
=2,λ
3
=0,故A~diag(2,2,0).又因B=(A+kE)
2
为A的矩阵多项式f(a)=(A+kE)
2
,其中f(x)=(x+k)
2
. 由命题2.5.3.1(2)知,A的矩阵多项式B=f(A)也相似于对角矩阵: Λ =diag(f(λ
1
),f(λ
2
),f(λ
3
))=diag((λ
1
+k)
2
,(λ
2
+k)
2
,(λ
3
+k)
2
)=diag((2+k)
2
,(2+k)
2
,k
2
). 当k≠-2且k≠0时,Λ 的主对角线上的元素,即B的全部特征值均为正数,B正定. 解三 令G=diag(2,2,0).因A为实对称矩阵,故存在正交矩阵Q,使Q
T
AQ=G,因而A=(Q
T
)
-1
GQ
-1
=QGQ
T
.注意到QQ
T
=E,有kE=Q(kE)Q
T
,则 kE+A=Q(kE+G)Q
T
=Q diag(k+2,k+2,k)Q
T
, B=(kE+A)
2
=Q(diag(k+2,k+2,k))
2
Q
T
=Q diag((k+2)
2
,(k+2)
2
,k
2
)Q
T
. 故B~Λ =diag((k+2)
2
,(k+2)
2
,k).所以当k≠-2且k≠0时,B的特征值全为正数,因而B为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/ysJ4777K
0
考研数学三
相关试题推荐
求∫0nπ|cosx|dx.
设总体X的概率密度函数为f(x;θ)=其中0<0<1是位置参数,c是常数,X1,X2,…,Xn是取自总体X的简单随机样本,则c=________;θ的矩估计量
设总体X在区间(0,θ)内服从均匀分布,X1,X2,X3是来自总体的简单随机样本.证明:都是参数θ的无偏估计量,试比较其有效性.
设齐次线性方程组,有非零解,且A=为正定矩阵,求a,并求当|X|=时XTAX的最大值.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关;(2)求A的特征值与特征向量.
设三阶矩阵A的特征值为λ1=-1,λ2=,λ3=其对应的特征向量为α1,α2,α3,令P=(2α3,-3α1,-α2),则P-1(A-1+2E)P=______.
设A为n阶矩阵,下列结论正确的是().
求函数f(x)=ln(1-x-2x2)的幂级数,并求出该幂级数的收敛域.
设A为m阶正定矩阵,B为m×n阶实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
随机试题
崇高在不同的人生实践领域的表现有【】
牙髓活力温度测验中的冷刺激是指
判断急性喉炎的体征除外
坝基渗透水压力不仅会在坝基岩体中形成巨大的扬压力,促使岩体滑动,还会降低岩石强度,减小滑动面上的有效正应力。下列()是降低坝基扬压力的有效办法。
发行人应当遵循()原则,按顺序披露可能直接或间接对发行人生产经营状况,财务状况和持续盈利能力产生重大不利影响的所有因素。
下列个人所得属于劳动报酬所得的是()。
区域发展的分析应包括经济、社会和生态环境三个方面。()
M投资者预计A股票将要跌价,于2012年4月1日与S投资者订立卖出合约,合约规定有效期为3个月,M投资者可按现有价格10元卖出A股票1000股,期权费为每股0.5元,2012年5月1日A股票价格下跌至每股8元(不考虑税金与佣金等其他因素)。关于S投资者
平型关大捷和百团大战()。
美联储加息会对我国经济产生怎样的影响?请简要列出其运行机制。
最新回复
(
0
)