首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵矩阵B=(kE+A)2,其中k为实数,E为单位矩阵,求对角矩阵A,使B与A相似,并求尼为何值时,B为正定矩阵?
设矩阵矩阵B=(kE+A)2,其中k为实数,E为单位矩阵,求对角矩阵A,使B与A相似,并求尼为何值时,B为正定矩阵?
admin
2019-05-08
37
问题
设矩阵
矩阵B=(kE+A)
2
,其中k为实数,E为单位矩阵,求对角矩阵A,使B与A相似,并求尼为何值时,B为正定矩阵?
选项
答案
解一 由|λE-A|
2
=λ(λ-2)
2
=0得到A的特征值λ
1
=λ
2
=2,λ
3
=0,且kE+A的 特征值为k+2(二重)和k,进而得到B的特征值为(k+2)
2
(二重)和k
2
.因A为实对称矩阵,kE+A也为实对称矩阵,故B=(kE+A)
2
也为实对称矩阵.利用实对称矩阵必可相似对角化得到B必与对角矩阵相似,且相似对角矩阵Λ =diag((k+2)
2
,(k+2)
2
,k
2
),于是有B~Λ . 当k≠一2且k≠0时,B的全部特征值均为正数,这时B必为正定矩阵. 解二 A为实对称矩阵,必可相似对角化,又A的特征值为λ
1
=λ
2
=2,λ
3
=0,故A~diag(2,2,0).又因B=(A+kE)
2
为A的矩阵多项式f(a)=(A+kE)
2
,其中f(x)=(x+k)
2
. 由命题2.5.3.1(2)知,A的矩阵多项式B=f(A)也相似于对角矩阵: Λ =diag(f(λ
1
),f(λ
2
),f(λ
3
))=diag((λ
1
+k)
2
,(λ
2
+k)
2
,(λ
3
+k)
2
)=diag((2+k)
2
,(2+k)
2
,k
2
). 当k≠-2且k≠0时,Λ 的主对角线上的元素,即B的全部特征值均为正数,B正定. 解三 令G=diag(2,2,0).因A为实对称矩阵,故存在正交矩阵Q,使Q
T
AQ=G,因而A=(Q
T
)
-1
GQ
-1
=QGQ
T
.注意到QQ
T
=E,有kE=Q(kE)Q
T
,则 kE+A=Q(kE+G)Q
T
=Q diag(k+2,k+2,k)Q
T
, B=(kE+A)
2
=Q(diag(k+2,k+2,k))
2
Q
T
=Q diag((k+2)
2
,(k+2)
2
,k
2
)Q
T
. 故B~Λ =diag((k+2)
2
,(k+2)
2
,k).所以当k≠-2且k≠0时,B的特征值全为正数,因而B为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/ysJ4777K
0
考研数学三
相关试题推荐
设随机变量X的概率密度为求随机变量Y=eX的概率密度fY(y)。
设总体X的概率密度函数为f(x;θ)=其中0<0<1是位置参数,c是常数,X1,X2,…,Xn是取自总体X的简单随机样本,则c=________;θ的矩估计量
设函数f(x,y,z)一阶连续可偏导且满足f(tx,ty,tz)=tkf(x,y,z).证明:
设f(x)在[a,+∞)上连续,f(x)<0,而f(x)存在且大于零.证明:f(x)在(a,+∞)内至少有一个零点.
设二阶常系数线性微分方程y’’+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
设齐次线性方程组,有非零解,且A=为正定矩阵,求a,并求当|X|=时XTAX的最大值.
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设A为n阶矩阵,若Ak+1≠0,而Akα=0.证明:向量组α,Aα,…,Ak-1α线性无关.
求函数f(x)=ln(1-x-2x2)的幂级数,并求出该幂级数的收敛域.
证明:S(x)=满足微分方程y(4)-y=0并求和函数S(x).
随机试题
下列关于普通钢筋混凝土简支梁预制施工程序,叙述正确的是()。
下列哪项不能作为肺心病的诊断依据
某开发商建成一栋建筑面积为10000m2的住宅楼,该栋住宅楼套内建筑面积之和为8500m2,若某购房者购买其中一套套内建筑面积为100m2的住房,则该购房者拥有的房屋产权建筑面积为()m2。
《民用航空法》规定,因发生在民用航空器上或者在旅客上下民用航空器过程中的事件,造成旅客人身伤亡的,承运人应当()
在TMS中,运输资源管理模块的内容是()。
(2016·河南)教师非常关注自己的生存适应性,这是教师成长过程中关注发展阶段的特征。()
1.每年3月,对于中国第一煤炭大省山西来说,应该是个喜庆的月份,因为每年这个时候,全国煤炭需求紧张,大量的需求极大拉动山西煤炭生产。一吨吨“黑金”运出去,换回的是数以亿计的人民币。但是频发的矿难和死亡的阴影不时地笼罩在这个产煤大省的上空。2010
小王计划邀请30家客户参加答谢会,并为客户发送邀请函。快速制作30份邀请函的最优操作方法是()
Atpresent,Chinaisconsideringwhetherornottopushbacktheretirementage.Thetopichasbeenhotlydebatedsinceitfirst
(1)There’sthisgreatrecurringSaturdayNightLiveskitfromseveralyearsbackwherePhilHartmanplaysanunfrozencavemanwh
最新回复
(
0
)