首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一 S2恒为1,求
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一 S2恒为1,求
admin
2021-01-19
82
问题
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S
1
,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S
2
,并设2S
1
一 S
2
恒为1,求此曲线y=y(x)的方程.
选项
答案
曲线y=y(x)上点P(x,y)处切线方程为 y 一y=y’(x)(X一x) 它与x轴的交点为[*] 由于y’(x>0,y(0)=1,从而y(x)>0,于是 [*] 又 S
2
=∫
0
x
y(t) dt 由条件2S
1
一S
2
=1知 [*]一
1
y(t)dt=1 (*) 两边对x求导并化简得 yy"=(y’)
2
令P=y’,则上述方程可化为 [*]=P
2
从而 [*] 解得 P=C
1
y, 即 [*]=C
1
y 于是 [*] 注意到y(0)=1,并由(*)式知y’(0)=1.从而可知C
1
=1,C
2
=0,故所求曲线的方程是y=e
x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/yu84777K
0
考研数学二
相关试题推荐
以y=C1e-2χ+C2eχ+cosχ为通解的二阶常系数非齐次线性微分方程为_______.
曲线点处的法线方程是______.
曲线y=(x≥0)与x轴围成的区域面积为_______
[*]其中C为任意常数
设f′(χ)在[0,1]上连续,且f(1)=f(0)=1.证明:∫01f′2(χ)dχ≥1.
A、 B、 C、 D、 A由积分上、下限知,积分区域D=D1∪D2={(x,y)|0≤x≤1,0≤y≤1)∪{(x,y)|lny≤x≤1,1≤y≤e}={(x,y)|0≤y≤ex,0≤x≤1).原式
(2005年)设区域D={(χ,y)|χ2+y2≤4,χ≥0,y≥0},f(χ)为D上的正值连续函数,a,b为常数,则【】
A、 B、 C、 D、 D如图,若区域D表示为X型时,D={(x,y)|0≤x≤1,1-原式=;若区域D表示为Y型时,D1={(x,y)|0≤x≤,0≤y≤1}.D2={(x,y)|0≤x≤2-y,1
令[*]=t,则原式=∫ln(1+t)d(t2)=t2ln(1+t)-∫t2/(t+1)dt=t2ln(1+t)-∫(t-1+1/(t+1))dt=t2ln(1+t)-t2/2+t-ln(t+1)+C=(x-1)ln(1+t)-x/2+t+C.
被积函数为幂函数与指数函数的乘积,因此采用分部积分法,将幂函数看作u[*]
随机试题
中压废热锅炉的蒸汽压力为()。
A.机械性刺激敏感B.突发性电击样痛C.定点性咀嚼剧痛D.疼痛不定位,夜间加重E.刺痛人洞引起疼痛下述疾病可能出现的疼痛描述正确的是深龋
赵某与罗某系邻居。两人因日常小事纠纷不断。某日,两人又起纠纷,争吵中罗某抄起木棍,打在赵某头上,致使其严重脑震荡,左耳失聪,赵某因此受重伤而向公安机关报案。公安机关认为本案系邻里纠纷,以民事调解为宜,不予立案。赵某即将本案诉至人民法院。下列选项中,哪一项不
当电梯轿厢使用玻璃轿壁时,必须安装()高度的扶手。
你认为最重要的样品是()
环境创设中,幼儿与教师共同合作,共同参与,符合幼儿环境创设的()原则。
森林效应:一棵树如果单独生长在一个地方,往往比较矮小、畸形,而当众多树木生长在一起、,共用水源的时候,往往能长得郁郁葱葱。请问“森林效应”对你有什么启示?
长期以来,我国城市管理执法体制弊端多多,部门林立,各管一摊。管市容的不管破坏绿化的,管破坏绿化的不管违章建设,管违章建设的不管街头无照摆摊……而许多违法问题的处理又常常涉及几个执法部门。比如,对于马路市场,工商、交通、市容等执法部门都可以管,叉都可以不管。
用来控制、指挥和协调计算机各部件工作的是()。
HIV&AIDS[A]AIDShasnowsurpassedtheBlackDeathonitscoursetobecometheworstpandemicinhumanhistory.Attheendof
最新回复
(
0
)