首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设,n=0,1,2,….则下列关于an的关系式成立的是 ( )
设,n=0,1,2,….则下列关于an的关系式成立的是 ( )
admin
2018-12-21
53
问题
设
,n=0,1,2,….则下列关于a
n
的关系式成立的是 ( )
选项
A、a
n﹢2
=a
n﹢1
﹢a
n
.
B、a
n﹢3
=a
n
.
C、a
n﹢4
=a
n﹢2
﹢a
n
.
D、a
n﹢6
=a
n
.
答案
D
解析
由f(x)=
,得f(0)=1,再由
f(x)(x
2
-x﹢1)=x﹢1, (*)
两边对x求一阶导数,得f
’
(x)(x
2
-x﹢1)﹢f(x)(2x-1)=1.
将x=0代入,得 f
’
(0)-f(0)=1,f
’
(0)=f(0)﹢1=2.
将(*)式两边对.x求n阶导数,n≥2,有f
(n)
(x)(x
2
-x﹢1)﹢C
1
n
f
n-1
(x)(2x-1)﹢C
2
n
(x)·2=0,
将x=0代入,得f
(n)
(0)-C
1
n
f
n-1
(0)﹢2C
2
n
f
n-2
(0)=0,
即 f
n
(0)=nf
n-1
(0)-n(n-1)f
(n-2)
(0),n=2,3,….
或写成a
n﹢2
=a
n﹢1
-a
n
,n=0,1,2,…. (**)
现在验算(A)~(D)中哪一个正确.
显然,由递推公式(**)知,(A)的左边a
n﹢2
=a
n﹢1
-a
n
,仅当a
n
=0时才有(A)的左边等于(A)的右边,故(A)不正确.
再验算(B).(B)的左边a
n﹢3
=a
n﹢2
-a
n﹢1
=a
n﹢1
-a
n
-a
n﹢1
=-a
n
,
所以仅当a
n
=0时,(B)的左边等于(B)的右边,故(B)不正确.
再验算(C).(C)的左边a
n﹢4
=a
n﹢3
-a
n﹢2
=a
n﹢2
-a
n﹢1
-a
n﹢2
=-a
n﹢1
.
(C)的右边a
n﹢2
﹢a
n
=a
n﹢1
-a
n
﹢a
n
=a
n﹢1
.
(C)的左边等于(C)的右边,得a
n﹢1
=0,n=0,1,2….但这不正确.所以(C)也不正确.
余下只有(D).
以下可直接验算(D)正确.由已证(**)式,所以对一切n,有a
n﹢6
=a
n﹢5
-a
n﹢4
=a
n﹢4
-a
n﹢3
-a
n﹢4
=-a
n﹢3
,
从而 a
n﹢6
=-a
n﹢3
=-(a
n
)=a
n
,n=0,1,2,….
所以(D)正确.
转载请注明原文地址:https://kaotiyun.com/show/z8j4777K
0
考研数学二
相关试题推荐
(2004年)等于【】
(2008年)设A=,则在实数域上与A合同的矩阵为【】
(2002年)求微分方程χdy+(χ-2y)dχ=0的一个解y=y(χ),使得由曲线y=y(χ)与直线χ=1,χ=2以及χ轴所围成平面图形绕χ轴旋转一周的旋转体体积最小.
(1999年)设函数y(χ)(χ≥0)二阶可导,且y′(χ)>0,y(0)=1.过曲线上任意一点P(χ,y)作该曲线的切线及χ轴的垂线,上述两直线与χ轴所围成的三角形的面积记为S1,区间[0,χ]上以y=y(χ)为曲边的曲边梯形面积记为S2,并设2S1-S
(2006年)微分方程y′=的通解是_______.
(1987年)求(a,b是不全为零的非负常数).
(2005年)设区域D={(χ,y)|χ2+y2≤4,χ≥0,y≥0},f(χ)为D上的正值连续函数,a、b为常数,则
(1993年)设f′(χ)在[0,a]上连续,且f(0)=0,证明
设A是n阶实对称矩阵.证明:(1)存在实数c,使对一切χ∈Rn,有|χTAχ|≤cχTχ.(2)若A正定,则对任意正整数k,Ak也是对称正定矩阵.(3)必可找到一个数a,使A+aE为对称正定矩阵.
设(Ⅰ)的一个基础解系为写出(Ⅱ)的通解并说明理由.
随机试题
关于模板工程设计主要原则的说法,正确的是()。
互联网媒体的优点和缺点分别是()
每当我学习中遇到困难,他总是来帮助我。
器质性头痛病人的护理措施正确的是
为实现某种特定目的,投入资金和资源,在规定的期限内建造或购置固定资产的一整套活动,称为()。
某工程工作内容为修建一条公路和跨越公路的人行天桥,合同总价4000万元,合同工期20个月。施工中发生了以下情况:(1)由于图纸错误,监理工程师通知一部分工程暂停,拖延工期1.5个月。(2)由于高压线需要电力部门同意迁移后才能施工,造成工程延
基坑支护破坏的主要形式有()引起的破坏。
人是具有自我意识,发展到一定阶段的人,具有规划自己的未来和为未来的发展创造条件的能力。由此表明,人的身心发展具有()
信息系统的软件需求说明书是需求分析阶段最后的成果之一,()不是软件需求说明书应包含的内容。
Evenasaleaderathome,itwon’tbeeasyforthecompanytoestablishthatsamekindof_______inotherareas.
最新回复
(
0
)