设y’=arctan(x-1)2,y(0)=0,求∫01y(x)dx.

admin2020-03-10  43

问题 设y’=arctan(x-1)2,y(0)=0,求∫01y(x)dx.

选项

答案01y(x)dx=xy(x)∫01-∫01xarctan(x-1)2dx =y(1)-∫01(x-1)arctan(x-1)2d(x-1)-∫01arctan(x-1)2dx =[*]∫01arctan(x-1)2d(x-1)2=[*]∫01arctantdt =[*](tarctant|01-∫01[*]

解析
转载请注明原文地址:https://kaotiyun.com/show/zAD4777K
0

最新回复(0)