首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,π]上连续,在(0,π)内可导,证明:至少存在一点ξ∈(0,π),使得f’(ξ)=-f(ξ)cotξ.
设f(x)在[0,π]上连续,在(0,π)内可导,证明:至少存在一点ξ∈(0,π),使得f’(ξ)=-f(ξ)cotξ.
admin
2019-04-22
39
问题
设f(x)在[0,π]上连续,在(0,π)内可导,证明:至少存在一点ξ∈(0,π),使得f’(ξ)=-f(ξ)cotξ.
选项
答案
令φ(x)=f(x)sinx,φ(0)=φ(π)=0, 由罗尔定理,存在ξ∈(0,π),使得φ’(ξ)=0, 而φ’(x)=f’(x)sinx+f(x)cosx, 于是f’(ξ)sinξ+f(ξ)cosξ=0,故f’(ξ)=-f(ξ)cotξ.
解析
转载请注明原文地址:https://kaotiyun.com/show/zCV4777K
0
考研数学二
相关试题推荐
设证明曲线y=f(x)在区间(ln2,+∞)上与x轴围成的区域有面积存在,并求此面积。
设A是三阶实对称矩阵,其特征值为λ1=3,λ2=λ3=5,且λ1=3对应的线性无关的特征向量为α1=,则λ2=λ3=5对应的线性无关的特征向量为_______.
设A、B均为三阶矩阵,E是三阶单位矩阵,已知AB=2A+B,B=,则(A-E)-1=_______.
设fn(χ)=χ+χ2+…+χn(n≥2).(1)证明方程fn(χ)=1有唯一的正根χn;(2)求χn.
设抛物线y=aχ2+bχ+c(a<0)满足:(1)过点(0,0)及(1,2);(2)抛物线y=aχ2+bχ+c与抛物线y=-χ2+2χ所围图形的面积最小,求a,b,c的值.
设二次型f=2χ12+2χ22+aχ32+2χ1χ2+2bχ1χ3+2χ2χ3经过正交变换X=QY化为标准形f=y12y22+4y32,求参数a,b及正交矩阵Q.
二次型f(x1,z2,z3)一z;+ax;+z;一4x1z2—8x1z3—4x2.273经过正交变换化为标准形5y12+by22+4y32,求:(1)常数a,b;(2)正交变换的矩阵Q.
用配方法化下列二次型为标准形:f(χ1,χ2,χ3)=χ12+2χ22-5χ32+2χ1χ2-2χ1χ3+2χ2χ3.
设二次型f(χ1,χ2,χ3)=(a-1)χ12+(a-1)χ22+2χ32+2χ1χ2(a>0)的秩为2.(1)求a;(2)用正交变换法化二次型为标准形.
随机试题
根据《植物新品种保护条例》及相关规定,下列说法错误的是()。
群体归属感是指个人体验到自己属于或应属于某一群体成员的意识,是个人隶属于或依赖于群体的需要,是一种人类社会性的表现。有了这种意识,个体在进行自己的活动、认知和评价时,就会自觉地维护这个群体的利益,并与群体内的其他成员在情感上发生共鸣。根据上述定义,下列没有
患者男,61岁。术前诊断右下肺癌。既往无输血史。血型A型,RhD阳性。在全麻下行右下肺癌切除术,术中输血后不久即发现术野广泛渗血,血压下降,尿液呈酱油色。考虑急性溶血,立即停止输血,并将剩血送检。复查血型:正定型为A,反定型A;RhD阳性;抗体筛选阴性;血
对流免疫电泳的沉淀线出现在抗原和抗体之间且靠近抗原孔可说明
电气柜内二次回路的接线要求有()。
下列因素属于危险源中的第二类危险源的有()。
下岗职工李某以全家共有的房屋作为个人出资,设立个人独资企业。根据个人独资企业法规定,个人独资企业财产不足以清偿债务的,应以()对该企业的债务承担无限责任。
儿童在家中养成的爱劳动的习惯也会在学校中表现出来,这是()。
[*]
计算并填写下表(2)
最新回复
(
0
)