首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(χ)dχ=0.证明: (1)存在c∈(a,b),使得f(c)=0; (2)存在ξi∈(a,b)(i=1,2),且ξ1≠ξ2,使得f′(ξi)+f(ξi)=
设f(χ)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(χ)dχ=0.证明: (1)存在c∈(a,b),使得f(c)=0; (2)存在ξi∈(a,b)(i=1,2),且ξ1≠ξ2,使得f′(ξi)+f(ξi)=
admin
2020-03-16
31
问题
设f(χ)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫
a
b
f(χ)dχ=0.证明:
(1)存在c∈(a,b),使得f(c)=0;
(2)存在ξ
i
∈(a,b)(i=1,2),且ξ
1
≠ξ
2
,使得f′(ξ
i
)+f(ξ
i
)=0(i=1,2);
(3)存在ξ∈(a,b),使得f〞(ξ)=f(ξ);
(4)存在η∈(a,b),使得f〞(η)-3f′(η)+2f(η)=0.
选项
答案
(1)令F(χ)=∫
a
χ
f(t)dt,则F(χ)在[a,b]上连续,在(a,b)内可导,且F′(χ)=f(χ). 故存在c∈(a,b),使得∫
a
b
f(χ)dχ=F(b)-F(a)=F′(c)(b-a)=f(c)(b-a)=0,即f(c)=0. (2)令h(χ)=e
χ
f(χ),因为h(a)=h(c)=h(b)=0,所以由罗尔定理,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得h′(ξ
1
)=h′(ξ
2
)=0, 而h′(χ)=e
χ
[f′(χ)+f(χ)]且e
χ
≠0,所以f′(ξ
i
)+f(ξ
i
)=0(i=1,2). (3)令φ(χ)=e
-χ
[f′(χ)+f(χ)],φ(ξ
2
)=φ(ξ
2
)=0,由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使得φ′(ξ)=0, 而φ′(χ)=e
-χ
[f〞(χ)-f(χ)]且e
-χ
≠0,所以f〞(ξ)=f(ξ). (4)令g(χ)=e
-χ
f(χ),g(a)=g(c)=g(b)=0, 由罗尔定理,存在η
1
∈(a,c),η
2
∈(c,b),使得g′(η
1
)=g′(η
2
)=0, 而g′(χ)=e
-χ
[f′(χ)-f(χ)]且e
-χ
≠0,所以f′(η
1
)-f(η
1
)=0,f′(η
2
)-f(η
2
)=0. 令P(z)一e-2X Ef’(z)一厂(z)],P(’7,)一垆(孕)一0, 由罗尔定理,存在η∈(η
1
,η
2
)[*](a,b),使得φ′(η)=0, 而φ′(χ)=e
-2χ
[f〞(χ)-3f′(χ)+2f(χ)]且e
-2χ
≠0, 所以f〞(η)-3f′(η)+2f(η)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/zI84777K
0
考研数学二
相关试题推荐
设A是凡阶实对称矩阵,若对任意的n维列向量α恒有αTAα=0,证明A=0.
(1)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵.(2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
设函数f(x)在[0,π]上连续,且∫0πf(x)sindx=0,∫0πf(x)cosxdx=0。证明在(0,π)内f(x)至少有两个零点。
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
设B=2A一E,证明:B2=E的充分必要条件是A2=A.
(I)设f(x)在(一∞,+∞)上连续,证明f(x)是以l(l>0)为周期的周期函数的充要条件是对任意a∈(一∞,+∞)恒有∫aa+lf(x)dx=∫0lf(x)dx;(Ⅱ)求
随机试题
我国煤精工艺史上最早记录发现于辽宁省的()。
凯恩斯把有效需求不足的根源归于三大心理规律,即
具有及时性和高可靠性的操作系统是()。
对水分容易通透对NaCl和尿素不容易通透的肾小管是
褪黑素的化学性质属于
清热燥湿,泻火解毒清热解毒,疏风散热
马克思主义生命力的根源在于以实践为基础的科学性与革命性的统一。()
下列不属于资产评估假设的是()。
世变事易,词语的界定也会发生很多微妙的变化。比如:最初人们把文盲定义为“不识字的人”;后来又把文盲定义为“看不懂现代信息符号、图表的人”;而现在联合国把文盲定义为“不能用计算机交流的人”。从哲学上看,这是因为()
Inrecentdecades,scientistshavebecomeincreasinglyawareoftheparttheobserver【C1】______inthescientificprocess.Inthe
最新回复
(
0
)