首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3,如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3,如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
admin
2021-07-27
42
问题
已知4阶方阵A=[α
1
,α
2
,α
3
,α
4
],α
1
,α
2
,α
3
,α
4
均为4维列向量,其中α
2
,α
3
,α
4
线性无关,α
1
=2α
2
-α
3
,如果β=α
1
+α
2
+α
3
+α
4
,求线性方程组Ax=β的通解.
选项
答案
由α
1
=2α
2
-α
3
及α
2
,α
3
,α
4
线性无关,知r(A)=r(α
1
,α
2
,α
3
,α
4
)=3,且对应齐次线性方程组Ax=0有通解k[1,-2,1,0]
T
,又β=α
1
+α
2
+α
3
+α
4
,即[α
1
,α
2
,α
3
,α
4
]x=β=α
1
+α
2
+α
3
+α
4
=[α
1
,α
2
,α
3
,α
4
][*]故非齐次线性方程组有特解η=[1,1,1,1]
T
,故方程组的通解为k[1,-2,1,0]
T
+[1,1,1,1]
T
,k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/zQy4777K
0
考研数学二
相关试题推荐
设向量组α1,α2,α3线性无关,则下列向量组中线性无关的是()
下列命题中①如果矩阵AB=E,则A可逆且A一1=B;②如果n阶矩阵A,B满足(AB)2=E,则(BA)2=E;③如果矩阵A,B均为n阶不可逆矩阵,则A+B必不可逆;④如果矩阵A,B均为n阶不可逆矩阵,则AB必不可逆。正确的是()
设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解.
求微分方程y〞+y=χ2+3+cosχ的通解.
下列矩阵中不能相似于对角阵的矩阵是
已知α1,α2,α3,α4为3维非零列向量,则下列结论:①如果α4不能由α1,α2,α3,线性表出,则α1,α2,α3线性相关;②如果α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关;③如果r(
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是()
设向量组α1,α2,α3为方程组AX=0的一个基础解系,下列向量组中也是方程组AX=0的基础解系的是().
设A是4×5矩阵,ξ1=[1,一1,1,0,0]T,ξ2=[一1,3,一1,2,0]T,ξ3=[2,1,2,3,0]T,ξ4=[1,0,一1,l,-2]T都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ1,ξ2,ξ3,ξ4线性表出,若k1,k
随机试题
2021年上半年,S市工业战略性新兴产业总产值7164.68亿元,比去年同期增长19.6%,两年平均增长12.3%。其中,新能源汽车、新能源和高端装备产值同比分别增长2.5倍、32.1%和24.5%。2021年上半年,全市第三产业增加值15080.35亿
A.心胸隐痛,痛无定处B.心痛如刺,痛有定处C.心胸绞痛,心痛彻背D.心胸灼痛,时作时止瘀血痹阻型胸痹心痛的特点是
刘女士,60岁,13岁月经初潮,每次月经持续时间为5~6日,月经周期为28~30天,50岁绝经,其月经史可简写为
头面部的带状疱疹可引起面瘫、耳痛、外耳道疱疹三联征,称
A.4~6cmB.7~10cmC.10~15cmD.15~18cmE.20~25cm保留灌肠时,肛管插入肛门长度为
某水利工程业主与承包商签订了工程施工合同,合同中含两个子项工程,估算工程量甲项为2300m3,乙项为3200m3,经协商合同单价甲项为180元/m3,乙项为160元/m3。承包合同约定:(1)开工前业主应向承包商支付合同价20%的预付款
水闸闸墩混凝土的抗渗等级为W4,表示该混凝土抵抗静水压力的能力为()。[2012年10月真题]
下列项目中,销售企业应当作为财务费用处理的是()。
AgingposesaseriouschallengetoOECD(OrganizationofEconomicCo-operationandDevelopment)countries,inparticular,howto
GainingCrossculturalandInternationalPerspectives:ABookReviewTodayI’mgoingtoreviewsomebooksthatrelatetointer
最新回复
(
0
)