首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2002年)设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k,必有
(2002年)设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k,必有
admin
2021-01-19
98
问题
(2002年)设向量组α
1
,α
2
,α
3
线性无关,向量β
1
可由α
1
,α
2
,α
3
线性表示,而向量β
2
不能由α
1
,α
2
,α
3
线性表示,则对于任意常数k,必有
选项
A、α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关.
B、α
1
,α
2
,α
3
,kβ
1
+β
2
线性相关.
C、α
1
,α
2
,α
3
,β
1
+kβ
2
线性无关.
D、α
1
,α
2
,α
3
,β
1
+kβ
2
线性相关.
答案
A
解析
由已知,存在常数l
1
,l
1
,l
3
,使得
β
1
=l
1
α
1
+l
2
α
2
+l
3
α
3
(*)
如果kβ
1
+β
2
可由α
1
,α
2
,α
3
线性表示,则
存在常数m
1
,m
2
,m
3
,使得
kβ
1
+β
2
=m
1
α
1
+m
2
α
2
+m
3
α
3
(**)
将(*)式代入(**)式,可得
β
1
=(m
1
-kl
1
)α
1
+(m
1
-kl
1
)α
2
+(m
3
-kl
3
)α
3
即β
2
可由α
1
,α
2
,α
3
线性表示,这与已知条件矛盾,故kβ
1
+β
2
必不能由α
1
,α
2
,α
3
线性表示.再根据结论(可证明或引用定理):“若α
1
,α
2
,α
3
线性无关,则向量β不能由α
1
,α
2
,α
3
线性表示
α
1
,α
2
,α
3
,β线性无关”,便可推知α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关,因此,选项(A)正确.
转载请注明原文地址:https://kaotiyun.com/show/zR84777K
0
考研数学二
相关试题推荐
求函数f(x)=(2一t)e一tdt的最大值和最小值.
已知3阶矩阵A=有一个二重特征值,求a,并讨论A是否相似于对角矩阵.
将函数展开成x的幂级数,并求数项级数
x=φ(y)是y=f(x)的反函数,f(x)可导,且f’(x)=,f(0)=3,求φ’’(3).
设四元齐次线性方程组求:(1)与(2)的公共解。
设矩阵A的伴随矩阵A*=,且ABA—1=BA—1+3E,其中E为四阶单位矩阵,求矩阵B。
如果n阶矩阵A的秩r(A)≤1,(n>1),则A的特征值为0,0,…,0,tr(A).
计算定积分
求函数的间断点并指出其类型.
设有长为12cm的非均匀杆AB,AM部分的质量与动点M到端点A的距离x的平方成正比,杆的全部质量为360(g),则杆的质量表达式m(x)=________,杆在任一点M处的线密度ρ(x)=________.
随机试题
第一次鸦片战争时期,广东水师提督________战死虎门,________在吴淞西炮台以身殉国等。第二次鸦片战争时期,提督________、________(蒙古族)战死。中法战争期间,________多次击退法军,________率领清军和当地民众取得镇
在《饮酒(其五)》中,上下句之间有转折关系的是()
下列哪项不引起左心室肥大
A.中枢神经系统脱髓鞘疾病B.周围神经系统脱髓鞘疾病C.神经一肌肉传递障碍性疾病D.骨骼肌钙离子通道病变E.黑质致密区神经元缺失低钾性周期性瘫痪是
有关溢油动力学过程的扩展过程说法不正确的是()。
对文化遗产的保护,充足的资金保障是必不可少的条件。世界各国文化遗产保护先进国家和地区中,资金来源大致可以分为三个渠道:一是政府直接投资,二是政府通过发行专项彩券而进行的间接投入,三是来自社会团体或个人的投入。对上述文字理解不正确的是:
方法一[*]方法二[*]
有如下两个类定义:classAA{};classBB{AAv1,*v2;BBv3;int*v4;};其中有一个成员变量的定义是错误的,这个变量是
Youknowyoushoulddoit,otherpeopledoitallthetime.Maybeyou’vealreadydoneitbutitwasn’tverysatisfying,andyou’
A、Sheisdeterminednottogetinvolvedasothers.B、Sheisworriedmoreaboutherstudythananythingelse.C、Sheisalittlea
最新回复
(
0
)