首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列曲面积分: (Ⅰ)I=xyzdxdy +xzdydz+z2dzdx,其中x2+z2=a2在x≥0的一半中被y=0和y=h(h>0)所截下部分的外侧(见图9.60); (Ⅱ)I=xydzdx,其中S是由曲线x=ey2(0≤y≤a)绕x轴旋转成的旋转面
求下列曲面积分: (Ⅰ)I=xyzdxdy +xzdydz+z2dzdx,其中x2+z2=a2在x≥0的一半中被y=0和y=h(h>0)所截下部分的外侧(见图9.60); (Ⅱ)I=xydzdx,其中S是由曲线x=ey2(0≤y≤a)绕x轴旋转成的旋转面
admin
2019-02-26
87
问题
求下列曲面积分:
(Ⅰ)I=
xyzdxdy +xzdydz+z
2
dzdx,其中x
2
+z
2
=a
2
在x≥0的一半中被y=0和y=h(h>0)所截下部分的外侧(见图9.60);
(Ⅱ)I=
xydzdx,其中S是由曲线x=e
y
2
(0≤y≤a)绕x轴旋转成的旋转面,取外侧.
选项
答案
(Ⅰ)本题实际上可以分三个积分计算,即I=I
1
+I
2
+I
3
. 将∑在yz平面上的投影记为D
yz
,则D
yz
:0≤y≤h,-a≤z≤a.注意到∑的法线方向与x轴正方向夹锐角,则I
2
=[*]dydz. 此时已化成了二重积分,注意到D
yz
关于y轴对称,而被积函数为z的香函数。故I
2
=0. 由于∑垂直于zx平面(它在zx平面上的投影域面积为零),故I
3
=[*]z
2
dzdx=0,而 [*] 所以, I=I
1
+I
2
+I
3
=[*]h
2
a
3
. [*] (Ⅱ)曲面S的方程是:x=e
y
2
+z
2
(y
2
+z
2
≤a
2
),见图9.61.S在yz平面上的投影区域D
yz
易求, D
yz
:y
2
+z
2
≤a
2
,x=0,又[*]=2ye
y
2
+z
2
, S的法向量与x轴正向成钝角,于是 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/zh04777K
0
考研数学一
相关试题推荐
根据k的不同的取值情况,讨论方程χ3-3χ+k=0实根的个数。
设P(χ),q(χ),f(χ)均是关于χ的连续函数,y1(χ),y2(χ),y3(χ)是y〞+p(χ)y′+q(χ)y=f(χ)的3个线性无关的解,C1与C2是两个任意常数,则该非齐次线性微分方程的通解为()
设z=f(x,y)是由e2yz+x+y2+z=确定的函数,则=________·
已知方程组总有解,则λ应满足的条件是________。
设曲线C为
曲线y=的斜渐近线为_________.
设∑为由直线绕x轴旋转产生的曲面,则∑上点P(-1,1,一2)处的法线方程为().
设曲线y=y(x)位于第一卦限且在原点处的切线与x轴相切,P(x,y)为曲线上任一点,该点与原点之间的弧长为l1,点P处的切线与y轴交于点A,点A,P之间的距离为l2,又满足x(3l1+2)=2(x+1)l2,求曲线y=y(x);
(I)设A,B为n阶可相似对角化矩阵,且有相同特征值,证明:矩阵A,B相似.(Ⅱ)设求可逆矩阵P,使得P-1AP=B.
设α1,α2,β1,β2均是三维向量,且α1,α2线性无关,β1,β2线性无关,证明存在非零向量γ,使得γ既可由α1,α2线性表出,又可由β1,β2线性表出。当α1=,α2=,β1=,β2=时,求出所有的向量γ。
随机试题
论述学校事故的主要责任形式和制裁方式。
ThemostdistinguishingfeatureofCharlesDickens’worksis______.()
下列作品属于元散曲的有()
下面哪项是抢救新生儿窒息不必要的措施
直肠癌切除术能否保留肛门的主要决定因素是
根据《中华人民共和国药品管理法》,下列对违法行为的处罚错误的是
根据《森林法》,以下属于特种用途林的是()。
依据《建筑法》的规定,工程监理人员认为工程施工不符合工程设计要求、施工技术标准和合同约定的()。
不确定性分析方法有( )。
在Access表中,要查找包含问号(?)的记录,在"查找内容"框中应填写的内容是
最新回复
(
0
)