首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设e<a<b<e2,证明ln2b-ln2a>。
设e<a<b<e2,证明ln2b-ln2a>。
admin
2014-01-26
60
问题
设e<a<b<e
2
,证明ln
2
b-ln
2
a>
。
选项
答案
[详解1] 对函数ln
2
x在[a,b]上应用拉格朗日中值定理,得 [*] 设[*], 当t>e时,ψ’(t)<0,所以ψ(t)单调减少,从而ψ(ξ)>ψ(e
2
),即 [*], 故[*]。 [详解2] 设[*],则 [*], 所以 当x>e时,ψ"(x)<0,故ψ’(x)单调减少,从而当e<x<e
2
时, [*], 即 当e<x<e
2
时,ψ(x)单调增加.因此当e<x<e
2
时,ψ(b)>ψ(a), 即[*]。
解析
[分析] 根据要证不等式的形式,可考虑用拉格朗日中值定理或转化为函数不等式用单调性证明.
[评注] 本题也可设辅助函数为ψ(x)=ln
2
x-ln
2
a-
,e<a<x<e
2
或ψ(x)=ln
2
6-ln
2
x-
,e<x<b<e
2
,再用单凋性进行证明.
转载请注明原文地址:https://kaotiyun.com/show/zh34777K
0
考研数学二
相关试题推荐
(12年)设随机变量X与Y相互独立,且都服从参数为1的指数分布.记U=max{X,Y),V=min{X,Y}.(Ⅰ)求V的概率密度fV(v);(Ⅱ)求E(U+V).
设四阶矩阵A=(aij)不可逆,a12的代数余子式A12≠0,a1,a2,a3,a4为矩阵A的列向量组,A*为A的伴随矩阵,则方程组A*x=0的通解为
(2000年)设函数f(x)在[0,π]上连续,且∫0πf(x)dx=0,∫0πf(x)cosxdx=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
(92年)设3阶矩阵B≠O,且B的每一列都是以下方程组的解:(1)求λ的值;(2)证明|B|=0.
[2018年]已知总体X的密度函数为X1,X2,…,Xn为来自总体X的简单随机样本,σ为大于0的参数,记σ的最大似然估计量为求
(2006年)在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0)。(I)求L的方程;(Ⅱ)当L与直线y=ax所围平面图形的面积为时,确定a的值。
[2009年]设对上题中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。证明:对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)。
设A=。(Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(Ⅰ)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关。
随机试题
简述社会问题的构成要素。
休克的基本病理生理改变为
某公司未清偿的认股权证允许持有者以30元价格认购股票,当公司股票市场价格由40元上升到50元时,认股权证的理论价值便由5元上升到10元,认股权证的市场价格由6元上升到10.5元。下列计算正确的是()。
下列选项不属于建立客户关系的内容是()。
近年来,我国城乡儿童学前教育事业发展取得了长足的进步,但是农村学前儿童“人园难”的问题仍然没有得到彻底地解决。解决儿童“人园难"的问题,不能够依靠大量使用校车来接送儿童,“合理布局、就近人园”才是确保儿童安全、解决人园难的根本。如果以下各项为真,最能支持上
[2012年第32题]小张是某公司的销售员工,公司经理对他说:“如果你争取到这个项目,公司就奖励你一台笔记本电脑或者给你项目提成。”以下哪项如果为真,说明该经理没有兑现承诺?
在20世纪30年代前期、中期,中国共产党内屡次出现严重的“左”倾错误,其原因是多方面的。主要的原因在于
设A为n阶矩阵,若Ak-1a≠0,而Aka=0.证明:向量组a,Aa,...,Ak-1a线性无关。
在下列不同结构的处理机上执行6x6的矩阵乘法C:A×B,计算所需要的最短时间。只计算乘法指令和加法指令的执行时间,不计算取操作数、数据传送和程序控制等指令的执行时间。加法部件和乘法部件的延迟时间都是3个时钟周期,另外,加法指令和乘法指令还要经过“取指令”和
Startinginthemid-1990s,majorAmericancitiesbeganaradicaltransformation.Yearsofhighviolentcrimerates,thefts,ro
最新回复
(
0
)