首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)证明:对任意正整数n,都有成立. (2)设(n=1,2,…),证明数列{an}收敛.
(1)证明:对任意正整数n,都有成立. (2)设(n=1,2,…),证明数列{an}收敛.
admin
2014-01-26
45
问题
(1)证明:对任意正整数n,都有
成立.
(2)设
(n=1,2,…),证明数列{a
n
}收敛.
选项
答案
(1)方法一 根据拉格朗日定理,存在ε∈(n,n+1),使得[*] 所以[*] 方法二 考虑函数不等式[*]<ln(1 +x)<x(0<x<1). 先证In(1+x)<x,令f(x)=ln(1+x)-x, 则[*],有f(x)在[0,1]上单调递减. 因而当0<x<1时,f(x)<f(0)=0,即ln(1+x)
n}单调递减. 由(1)得a
n+1
-a
n
=[*],所以数列{a
n
}单调递减. 再证数列{a
n
}有下界.由(1)得[*] 即数列{a
n
}有下界.故数列{a
n
}收敛.
解析
对(1)用拉格朗日定理或把
换为x转化为函数不等式的证明;对(2)用单调有界原理.
转载请注明原文地址:https://kaotiyun.com/show/Nm34777K
0
考研数学二
相关试题推荐
设四阶矩阵A=(aij)不可逆,a12的代数余子式A12≠0,a1,a2,a3,a4为矩阵A的列向量组,A*为A的伴随矩阵,则方程组A*x=0的通解为
(91年)设0≤an<(n=1,2,…),则下列级数中肯定收敛的是【】
(2003年)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证必存在ξ∈(0,3)使f’(ξ)=0.
(06年)证明:当0<a<b<π时,bsinb+2cosb+π6>asina+2cosa+πa.
(89年)求微分方程y〞+5y′+6y=2e-χ的通解.
(02年)设函数u=f(χ,y,z)有连续偏导数,且z=z(χ,y)由方程χeχ-yey=zez所确定,求du.
[2017年]已知方程在区间(0,1)内有实根,求常数k的取值范围.
设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
下列无穷小中阶数最高的是()。
随机试题
社会组织
EvolutionofSleepSleepisveryancient.Intheelectroencephalographic(脑电图仪的)senseweshareitwithalltheprimates(灵长动
颌支托长度要求为
可以保持蛋白质活性的蛋白质沉淀方法是
(2011年)行政机关作出行政行为应当考虑相关因素,不能考虑不相关因素。这是()原则的要求。
下列关于劳动关系与劳动法律关系的说法,错误的是()。
新民主主义的经济纲领是()。
心理咨询师应对阻抗的要点是()。
对于领导者的素质要求,是根据领导者不同的()而要求不同。
【徐光启】华东师范大学2001年中国古代史真题;华东师范大学2004年中国通史真题
最新回复
(
0
)