首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2001年)设f(χ)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0, (1)写出f(χ)的带拉格朗日余项的一阶麦克劳林公式; (2)证明在[-a,a]上至少存在一点η,使a3f〞(η)=∫-aaf(χ)dχ
(2001年)设f(χ)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0, (1)写出f(χ)的带拉格朗日余项的一阶麦克劳林公式; (2)证明在[-a,a]上至少存在一点η,使a3f〞(η)=∫-aaf(χ)dχ
admin
2019-08-01
94
问题
(2001年)设f(χ)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0,
(1)写出f(χ)的带拉格朗日余项的一阶麦克劳林公式;
(2)证明在[-a,a]上至少存在一点η,使a
3
f〞(η)=∫
-a
a
f(χ)dχ
选项
答案
(1)对任意的χ∈[-a,a] f(χ)=f(0)+f′(0)χ+[*] 其中ξ在0与χ之间. (2)[*] 因为f〞(χ)在[-a,a]上连续,故对任意的χ∈[-a,a],有m≤f〞(χ)≤M,其中M,m分别为f〞(χ)在[-a,a]上的最大,最小值,所以 [*] 因而由f〞(χ)的连续性知,至少存在一点η∈[-a,a],使 [*] 即a
3
f〞(η)=3∫
-a
a
f(χ)dχ
解析
转载请注明原文地址:https://kaotiyun.com/show/wDN4777K
0
考研数学二
相关试题推荐
设齐次方程组(Ⅰ)有一个基础解系β1=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T.证明A的行向量组是齐次方程组(Ⅱ)的通解.
设f(x)在[0,1]连续,且f(0)=f(1),证明:在[0,1]上至少存在一点ξ,使得
证明:
设f(x)在[0,1]连续,在(0,1)内f(x)>0且xf’(z)=f(x)+ax2,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=f(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
设f(x)在(a,b)四次可导,x0∈(a,b)使得f’’(x0)=f’’’(x0)=0,又设f(4)(x)>0(x∈(a,b)),求证f(x)在(a,b)为凹函数.
说明下列事实的几何意义:(Ⅰ)函数f(x),g(x)在点x=x0处可导,且f(x0)=g(x0)f’(x0)=g’(x0);(Ⅱ)函数y=f(x)在点x=x0处连续,且有
设α1,α2,…,αs是一组两两正交的非零向量,证明它们线性无关.
设f(x)=又a≠0,问a为何值时存在.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,证明:∈(a,b)使得f(b)-(b-a)2f’’(ξ).
随机试题
患者,男性,肺心病,因肺部感染入院,血气分析结果:pH7.33,PaCO29.3kPa(70mmHg),HCO3-36mmol/L。由于治疗不当而使疾病加重时,可应用
关于药物流行病学的叙述,不正确的是:
鉴别肾盂肾炎或膀胱炎最有意义的是
能抑制脱氧胸苷酸合成酶的药物是氟尿嘧啶。()
从2006年1月1日起,曹小姐发现自己基本养老保险中个人账户的缴费比例发生了变化,其规模统一由本人缴费工资的11%调整为()。
下列杂剧不是关汉卿所作的是()。
幼儿园的环境创设主要是指()。
设f(x)在[a,+∞)上连续,f(a)
设A、B为任意两个事件,且AB,P(B)>0,则下列选项必然成立的是()
以下是学生选课系统中“学生查询成绩”交互行为的描述,请按要求回答问题。交互开始时终端上显示首页,用户选择“查询”请求后,显示“请输入学号”。在用户输入学号后,系统核对学生学号:若输入的学号不正确,则显示“输入的学号不正确”,此次查询取消,回
最新回复
(
0
)