首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2001年)设f(χ)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0, (1)写出f(χ)的带拉格朗日余项的一阶麦克劳林公式; (2)证明在[-a,a]上至少存在一点η,使a3f〞(η)=∫-aaf(χ)dχ
(2001年)设f(χ)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0, (1)写出f(χ)的带拉格朗日余项的一阶麦克劳林公式; (2)证明在[-a,a]上至少存在一点η,使a3f〞(η)=∫-aaf(χ)dχ
admin
2019-08-01
66
问题
(2001年)设f(χ)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0,
(1)写出f(χ)的带拉格朗日余项的一阶麦克劳林公式;
(2)证明在[-a,a]上至少存在一点η,使a
3
f〞(η)=∫
-a
a
f(χ)dχ
选项
答案
(1)对任意的χ∈[-a,a] f(χ)=f(0)+f′(0)χ+[*] 其中ξ在0与χ之间. (2)[*] 因为f〞(χ)在[-a,a]上连续,故对任意的χ∈[-a,a],有m≤f〞(χ)≤M,其中M,m分别为f〞(χ)在[-a,a]上的最大,最小值,所以 [*] 因而由f〞(χ)的连续性知,至少存在一点η∈[-a,a],使 [*] 即a
3
f〞(η)=3∫
-a
a
f(χ)dχ
解析
转载请注明原文地址:https://kaotiyun.com/show/wDN4777K
0
考研数学二
相关试题推荐
设f(x)在[0,1]连续,且f(0)=f(1),证明:在[0,1]上至少存在一点ξ,使得
讨论下列函数的连续性并判断间断点的类型:
设f(x)在[0,1]连续,在(0,1)内f(x)>0且xf’(z)=f(x)+ax2,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=f(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
证明函数f(x)=在(0,+∞)单调下降.
求下列函数的导数y’:(Ⅰ)y=arctanex2;(Ⅱ)y=
设函数f(x)在x=x0处存在f’+(x0)与f’-(x0),但f’+(x0)≠f’-(x0),说明这一事实的几何意义.
已知α1,α2,α3线性无关.α1+tα2,α2+2tα3,α3+4tα1线性相关.则实数t等于______.
曲线(x-1)3=2上点(5,8)处的切线方程是_______.
设f(x)在[a,b]上有二阶连续导数,求证:∫abf(x)dx=(b-a)[f(a)+f(b)]+∫abf’’(x)(x-a)(x-b)dx.
随机试题
被列入世界人类口头与非物质文化遗产的剧种是()
不属于类固醇激素分泌细胞结构特点的是
漏肩风肩外侧疼痛明显时,应循经加用( )
以下哪项不是大量输血的并发症?()
下列关于土地调查成果,表述正确的是()。
下列指标中,使用一张财务报表计算不出来的是()。
根据以下资料,回答下列问题。2006年全国共有生产力促进中心133l家,比上年增加61家。生产力促进中心在全国分布广泛,但地区分布不均,四川、山西、黑龙江、广西、福建等地较多,分别为136、99、96、94、83家。边远省份数量较少,如海南省仅有
Nowadays,airtravelisvery【21】.WearenotsurprisedwhenwewatchonTVthatapoliticianhastalkedwithFrenchPresidentin
Tothemajorityofus,musicisanindispensablepartofourdailylife.Itcanbedefinedinthisway,musicissoundarranged
A、Shecutherhairshortlikeaboy.B、Shesavedmoneyandboughtabicycle.C、Shegothighscoresinscience.D、Shedecidedto
最新回复
(
0
)