首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,-2,1)T,η2=(0,1,0,1)T是Ax=0的基础解系,则A的列向量的极大线性无关组是( )
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,-2,1)T,η2=(0,1,0,1)T是Ax=0的基础解系,则A的列向量的极大线性无关组是( )
admin
2017-01-16
66
问题
设A是5×4矩阵,A=(α
1
,α
2
,α
3
,α
4
),若η
1
=(1,1,-2,1)
T
,η
2
=(0,1,0,1)
T
是Ax=0的基础解系,则A的列向量的极大线性无关组是( )
选项
A、α
1
,α
3
。
B、α
2
,α
4
。
C、α
2
,α
3
。
D、α
1
,α
2
,α
4
。
答案
C
解析
由Aη
1
=0知
α
1
+α
2
-2α
3
+α
4
=0, ①
由Aη
2
=0知
α
2
+α
4
=0, ②
因为n-r(a)=2,所以r(a)=2,所以可排除选项D;
由②知α
2
,α
4
线性相关,故应排除选项B;
把②代入①得α
1
-2α
3
=0,即α
1
,α
3
线性相关,排除选项A;
如果α
2
,α
3
线性相关,则r(α
1
,α
2
,α
3
,α
4
)=r(2α
3
,α
2
,α
3
,-α
2
)=r(α
2
,α
3
)=1与r(a)=2相矛盾,因此α
2
,α
3
线性无关。故选C。
转载请注明原文地址:https://kaotiyun.com/show/0Cu4777K
0
考研数学一
相关试题推荐
某保险公司设置某一险种,规定每一保单有效期为一年,有效理赔一次,每个保单收取保费500元,理赔额为40000元.据估计每个保单索赔概率为0.01,设公司共卖出这种保单8000个,求该公司在该险种上获得的平均利润.
利用数学期望的性质,证明方差的性质:(1)Da=0;(2)D(X+a)+DX;(3)D(aX)=a2DX.
连续进行n次独立重复试验,设每次试验中成功的概率为p,0≤p≤1.问p为何值时,成功次数的方差为0?p为何值时,成功次数的方差达到最大?
在投掷两枚骰子的试验中,观察两枚骰子出现的点数,写出这一试验的样本空间.记X=两枚骰子出现的点数的和,Y=两枚骰子出现的最大点数.写出随机变量X和Y作为样本空间上的函数的表达式.
设f(x),g(x)在[a,b]上连续,(a,b)内可导,证明存在ε∈(a,b)使得[f(b)-f(a)]gˊ(ε)=[g(b)-g(a)]fˊ(ε)
证明下列极限都为0;
证明:(1)周长一定的矩形中,正方形的面积最大;(2)面积一定的矩形中,正方形的周长最小。
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设A为n阶矩阵,满足AAT=E(E为n阶单位阵,AT是A的转置矩阵),丨A丨
设(X1,X2,…,X3)(n≥2)为标准正态总体,X的简单随机样本,则().
随机试题
下列不属于习近平主席在亚洲文明对话大会开幕式上的主旨演讲提出的是:
(2004)把木材、实心黏土砖和混凝土三种常用建材按导热系数由小到大排列,正确的顺序应该是?
在同业拆借中,与拆借双方协商确定利率相比,公开竞价确定利率时,利率弹性更大。()
在品牌战略的内容中,()是品牌战略的重心。
国债的功能有()。
下列各项中,应列入利润表中“营业税金及附加”项目的有()。
已知函数φ(x)=5x2+5x+1(x∈R),函数y=f(x)的图象与φ(x)的图象关于点中心对称.求函数y=f(x)的解析式;
把下面的六个图形分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是()。
认识是主体在实践基础上对客体的能动反映,其主要内容是
GorillasHaveaWordforitKokoisthefirstgorillatohavebeentaughtsignlanguage.Withavocabularyofmorethan1,00
最新回复
(
0
)