首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,-2,1)T,η2=(0,1,0,1)T是Ax=0的基础解系,则A的列向量的极大线性无关组是( )
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,-2,1)T,η2=(0,1,0,1)T是Ax=0的基础解系,则A的列向量的极大线性无关组是( )
admin
2017-01-16
33
问题
设A是5×4矩阵,A=(α
1
,α
2
,α
3
,α
4
),若η
1
=(1,1,-2,1)
T
,η
2
=(0,1,0,1)
T
是Ax=0的基础解系,则A的列向量的极大线性无关组是( )
选项
A、α
1
,α
3
。
B、α
2
,α
4
。
C、α
2
,α
3
。
D、α
1
,α
2
,α
4
。
答案
C
解析
由Aη
1
=0知
α
1
+α
2
-2α
3
+α
4
=0, ①
由Aη
2
=0知
α
2
+α
4
=0, ②
因为n-r(a)=2,所以r(a)=2,所以可排除选项D;
由②知α
2
,α
4
线性相关,故应排除选项B;
把②代入①得α
1
-2α
3
=0,即α
1
,α
3
线性相关,排除选项A;
如果α
2
,α
3
线性相关,则r(α
1
,α
2
,α
3
,α
4
)=r(2α
3
,α
2
,α
3
,-α
2
)=r(α
2
,α
3
)=1与r(a)=2相矛盾,因此α
2
,α
3
线性无关。故选C。
转载请注明原文地址:https://kaotiyun.com/show/0Cu4777K
0
考研数学一
相关试题推荐
[*]本题是两个不同分布的综合问题,所求的事件Vn为n次独立重复实验中X的观测值不大于0.1的次数,故Vn服从二项分布b(n,p),而这里p为X的观测值不大于0.1的概率,需要根据X服从的分布来计算.
一张贴现债券(贴现债券是指期中不付息,期末还本付息的债券)承诺到期还本付息共偿还1025元.由于负债方可能违约,债权人承担可能得不到承诺支付的风险,因而这一债券是一个风险资产.根据金融理论,市场对风险资产的定价将使得其期望收益率等于具有同类风险的资产的期
设f(x),g(x)在[a,b]上连续,(a,b)内可导,证明存在ε∈(a,b)使得[f(b)-f(a)]gˊ(ε)=[g(b)-g(a)]fˊ(ε)
由Y=lgx的图形作下列函数的图形:
已知y=x2+a与y=b㏑(1+2x)在x=1点相切(两曲线在(x。,y。)处相切是指它们在(x。,y。)处有共同切线),求a,b的值.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设矩阵,矩阵B满足ABA*=2BA*+E,其中A*为A的伴随矩阵,E是单位矩阵,则丨B丨=__________.
设随机变量X和Y都服从标准正态分布,则
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记α=,β=若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22
随机试题
过氧乙酸的保管和使用方法错误的是
两足跟中心点之间的水平距离为
A.颌内静脉与颞浅静脉汇合而成B.面后静脉前支与面前静脉汇合而成C.面后静脉后支与耳后静脉汇合而成D.面前静脉与颌内静脉汇合而成E.耳后静脉与颞浅静脉汇合而成颈外静脉是由
女性,32岁,阵发性上腹痛2年,夜间加重,疼痛有季节性,冬季明显,有反酸,为进一步确诊,首选的检查方法是
生地黄质地断面为巴戟天为
谈谈你对“幼儿的生活就是幼儿的教育,幼儿的教育就是幼儿的生活”的理解。
事物发展经过两次否定,出现了初始阶段的某些特征,好像是一种回复。()
下列关于亲属关系的发生与终止原因的表述,错误的是()。
Thelevelofeconomicandindustrialdevelopmentenjoyedbyastateaffectstheforeignpolicygoalsitcanpursue.(46)Asagen
PERSON:APPAREL::
最新回复
(
0
)