首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2016年] 已知函数f(x)可导,且f(0)=1,0<f’(x)<,设数列{xn}满足xn+1=f(xn)(n=1,2,…),证明: xn存在,且0<xn<2.[img][/img]
[2016年] 已知函数f(x)可导,且f(0)=1,0<f’(x)<,设数列{xn}满足xn+1=f(xn)(n=1,2,…),证明: xn存在,且0<xn<2.[img][/img]
admin
2019-04-08
68
问题
[2016年] 已知函数f(x)可导,且f(0)=1,0<f’(x)<
,设数列{x
n
}满足x
n+1
=f(x
n
)(n=1,2,…),证明:
x
n
存在,且0<
x
n
<2.[img][/img]
选项
答案
因[*](x
n+1
-x
n
)绝对收敛,故部分和S
n
=[*](x
k+1
-x
k
)的极限存在,即[*]存在,从而[*]x
n
存在. 设[*],由于f(x)可导,f(x)连续,于是在x
n+1
=f(x)两边取极限: [*],即a=f(A). 因而f(A)一f(0)=f’(ξ)a,ξ位于0与a之间,即a一1=f’(ξ)a,[*]. 由题设知,[*],故[*],即1<a<2.
解析
转载请注明原文地址:https://kaotiyun.com/show/0J04777K
0
考研数学一
相关试题推荐
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n。
设X1和X2是相互独立的连续型随机变量,它们的概率密度函数分别为f1(x)和f2(x),分布函数分别为F1(x)和F2(x),则()
设f(x),g(x)在点x。可导,且f(x。)=g(x。),fˊ(x。)=gˊ(x。),若h(x)在x。的某一邻域内满足f(x)≤h(x)≤g(x),证明:h(x)在点x。可导,并且hˊ(x。)=fx。(x。)=gx。(x。).
计算曲线积分其中L是以点(1,0)为圆心,R为半径的圆周(R≠1),取逆时针方向.
设n阶矩阵A正定,X=(x1,x2,…,xn)T,证明:二次型为正定二次型.
设函数f(x)满足xf’(x)-2f(x)=-x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D.若D绕x轴旋转一周所得旋转体体积最小,求:曲线在原点处的切线与曲线及直线x=1所围成的平面图形的面积.
设二维随机变量(X,Y)在区域D:x2+y2≤9a2(a>0)上服从均匀分布,p=P(X2+9Y2≤9a2),则().
设X1,X2,…,Xn,…相互独立且都服从参数为λ(λ>0)的泊松分布,则当n→∞时以Ф(x)为极限的是
(1998年)设l是椭圆其周长记为a,则
设Z~N(0,1),令X=μ+σZ,X1,X2,Xn为来自总体X的简单随机样本,则当n→∞时,Yn=依概率收敛于
随机试题
场外期权的复杂性主要体现在哪些方面?()Ⅰ.交易双方需求复杂Ⅱ.期权价格不体现为合约中的某个数字,而是体现为双方签署时间更长的合作协议Ⅲ.为了节约甲方的风险管理成本,期权的合约规模可能小于甲方风险暴露的规模Ⅳ.某些场外期权定价和
某工地工人在施工过程中不慎被钢筋刺破胸壁。该损伤类型为
患者,男性,5岁。眼距宽,眼裂小.鼻梁低平,舌常伸出口外,流涎多,有通贯掌,合并先天性心脏病,最有确诊意义的检查为
四肢出血,使用止血带最长不能连续超过
意识检查指的是()。
在居住小区设计方案评价中,影响居住面积密度的主要因素是房屋的()。【2009年真题】
下列各项中,属于日记账登记特点的是()。
一个城市的变化最突出地表现在建筑上。()
奥运五环旗中的红色代表()。
下面关于国家总体安全观的正确说法有()
最新回复
(
0
)