首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设ξ0=(1,-1,1,-1)T是线性方程组 的一个解向量,试求 (Ⅰ)方程组(*)的全部解; (Ⅱ)方程组满足x2=x3的全部解.
设ξ0=(1,-1,1,-1)T是线性方程组 的一个解向量,试求 (Ⅰ)方程组(*)的全部解; (Ⅱ)方程组满足x2=x3的全部解.
admin
2020-07-31
46
问题
设ξ
0
=(1,-1,1,-1)
T
是线性方程组
的一个解向量,试求
(Ⅰ)方程组(*)的全部解;
(Ⅱ)方程组满足x
2
=x
3
的全部解.
选项
答案
(Ⅰ)将ξ
0
代入方程组,得-λ+μ=0,即λ=μ,代入增广矩阵,并作初等行变换, [*] 当λ≠2时,r(A)=r(A[*]b)=3. Ax=0有基础解系ξ=(-2,1,-1,2)
T
,Ax=b有特解η=(-1,0,0,1)
T
, Ax=b的通解为 kξ+η=k(-2,1,-1,2)
T
+(-1,0,0,1)
T
=(-2k-1,k,-k,2k+1)
T
, 其中k是任意常数. 当λ=2时,r(A)=r(A[*]b)=2. Ax=0有基础解系ξ
1
=(-4,1,0,2)
T
,ξ
2
=(-2,0,1,0)
T
,Ax=b有特解η=(-1,0,0,1)
T
, Ax=b的通解为 k
1
ξ
1
+k
2
ξ
2
+η=k
1
(-4,1,0,2)
T
+k
2
(-2,0,1,0)+(-1,0,0,1)
T
=(-4k
1
-2k
2
-1,k
1
,k
2
,2k
1
+1)
T
, 其中k
1
,k
2
是任意常数. (Ⅱ)当λ≠2时,由x
2
=x
3
,有k=-k,得k=0.故满足x
2
=x
3
的全部解为(-1,0,0,1)
T
. 当λ=2时,由x
2
=x
3
,有k
1
=k
2
. 故满足x
2
=x
3
的全部解为(-6k
1
-1,k
1
,k
1
,2k
1
+1)
T
,其中k
1
是任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/0L84777K
0
考研数学二
相关试题推荐
求过原点且与曲线相切的切线方程.
设四元齐次线性方程组(I)为又已知某齐次线性方程组(Ⅱ)的通解为(1)求线性方程组(I)的基础解系;(2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
设函数f(x)在x=0的某邻域内连续,且则在x=0处f(x)()
设函数f(x)在(一∞,+∞)存在二阶导数,且f(x)=f(一x),当x<0时有f’(x)<0,f’’(x)>0,则当x>0时,有()
设f(x)在(-∞,+∞)上有定义,x0≠0为函数f(x)的极大值点,则().
设函数讨论函数f(x)的间断点,其结论为().
(04年)某种飞机在机场降落时.为了减少滑行距离.在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h.经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比
(1)设f(x)是以T为周期的连续函数,试证明:∫0xf(t)dt可以表示为一个以T为周期的函数ψ(x)与kx之和,并求出此常数k;(2)求(1)中的(3)以[x]表示不超过x的最大整数,g(x)=x一[x],求
求曲线的斜渐近线.
设f(x)是奇函数,且对一切x有f(x+2)=f(x)+f(2),又f(1)=a,a为常数,n为整数,则f(n)=____.
随机试题
【背景资料】某工程,施工单位按招标文件中提供的工程量清单作出报价(见下表)。施工合同约定:工程预付款为合同总价的20%,从工程进度款累计总额达到合同总价10%的月份开始,按当月工程进度款的30%扣回,扣完为止;施工过程中发生的设计变更,采用以直接
全面强直-阵挛发作分为强直期、_______和_______三期。
女,60岁,发现主动脉瓣狭窄10年,快走时心前区憋闷3年。心电图示左心室肥厚。该患者治疗宜首选
甲公司向某银行贷款100万元,乙公司以其所有的一栋房屋作抵押担保,并完成了抵押登记。现乙公司拟将房屋出售给丙公司,通知了银行并向丙公司告知了该房屋已经抵押的事实。乙、丙订立书面买卖合同后到房屋管理部门办理过户手续。下列哪些说法是正确的?(2009年卷三第5
甲是某有限合伙企业的有限合伙人。在合伙协议无特别约定的情况下,甲在合伙期间未经其他合伙人同意实施的下列行为中,违反《合伙企业法》规定的是()。
2008年1月8日,张某看到某公司的招聘启事后,于1月10日到某公司应聘。1月11日双方就试用期、劳动待遇、在职培训、违约金等事项进行协商后,达成了口头协议。张某于1月15日正式上班,2月28日双方签订了书面协议。某公司在与张某建立劳动合同关系过程中不
2015年全球发展中地区饥饿人口的比例是1990~1992年的一半的有几个地区?()若南亚地区1992年总人口数为15亿,该地区平均人口年增长率为2%,那么2002年南亚地区饥饿人口总量为多少亿人?()
传记,从本质上说,是人的生命活动的记载,是人类生命的一种特殊载体。人的生命活动,不仅表现出生存和发展的渴求,而且表现出自身潜能的开发、释放。这种自身潜能的开发、释放,就是一种力的创造。创造,包括多种形式,有政治家治国平天下的才能展现,有哲学家、思想家在精神
朱子读书法有哪些基本内容?
管理信息系统的综合结构中有一种是把同一管理层次上的若干相关职能综合起来形成的。这种结构叫______。
最新回复
(
0
)